Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31776–31789 | Cite as

Factors that control the spatial and temporal distributions of phosphorus, nitrogen, and carbon in the sediments of a tropical reservoir

  • Sheila Cardoso-Silva
  • Paulo Alves de Lima Ferreira
  • Rubens César Lopes Figueira
  • Daniel Clemente Vieira Rêgo da Silva
  • Viviane Moschini-Carlos
  • Marcelo L. M. Pompêo
Letter to the Editor
  • 112 Downloads

Abstract

The impacts of anthropic activities have had profound effects on the nitrogen (N) and phosphorus (P) cycles in many aquatic ecosystems. We investigated the spatial and temporal distributions of carbon (C), N, and P in the sediments of a tropical Paiva Castro Reservoir (São Paulo, Brazil), as well as their release and retention in the system. In 2010, surface sediments were collected at nine sites in the reservoir, and a core was obtained in the limnetic zone, in 2010. The core was dated using the 210Pb technique. The organic C content was estimated from organic matter concentration, which was measured by the loss-on-ignition method, and the concentrations of P and N were determined by spectrophotometry. Marked spatial heterogeneity in the Paiva Castro sediments associated with both natural variations in the water body and variations induced by human impacts was observed. Heterogeneity was evidenced by a decrease in the allochthonous contribution of organic matter (C/N) in the upstream-downstream direction and increases of N and P, mainly associated with water flows in the different compartments of the reservoir. In the core, C and N concentrations display significant positive correlations with increases in population and agricultural activities in the drainage basin through time. The C/P molar ratios in surface sediments are indicative of human impacts in the region, as C:P ratios in the sediment are low (7.8:1) compared to the Redfield ratio (C:P = 108:1). Predominance of oxic conditions at the sediment surface and particles sizes < 63 μm provided favorable conditions for P retention in the sediments, which helps prevent eutrophication. Approaches used in this research should be extended to other locations, especially in mesotrophic and oligotrophic reservoirs, to provide information on historical impacts in such aquatic ecosystems.

Keywords

Anthropic impacts Eutrophication Nitrogen Paleolimnology Phosphorus Reservoir Sediment core 

Notes

Acknowledgements

We are grateful to the Postgraduate Program in Environmental Sciences, at the Sorocaba campus of UNESP, to the Ecology Department at the Biosciences Institute and the Chemistry Department at the Oceanographic Institute of the University of São Paulo for technical assistance. The authors thank three anonymous reviewers for their constructive comments which have improved the quality of our manuscript and Dr. Diego Javier Perez Ortega for clarifying some questions about geoprocessing.

Funding information

Financial support for this work was provided by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, grant no. 470443/2008) and CAPES-PNPD (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_2923_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14.9 kb)
11356_2018_2923_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15.3 kb)

References

  1. Alighalehbabakhani F, Miller CJ, Selegean JP, Barkach J, Abkenar SMS, Dahl T, Baskaran M (2017) Estimates of sediment trapping rates for two reservoirs in the Lake Erie watershed: past and present scenarios. J Hydrol 544:147–155CrossRefGoogle Scholar
  2. Allen HE, Boothma W, Di Toro DM, Mahony JD (1991) Determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. EPA 821-R-91-100, USEPA, Office of Water, Office of Science and Technology, Health and Ecological Criteria, WashingtonGoogle Scholar
  3. Ambühl H, Bührer H (1975) Technik der Entnahme ungestörter Grossproblen von Seesedimenten: ein verbessertes Boohrlot. Schweiz Z Hydrol 37:175–186Google Scholar
  4. Andersen JM (1976) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331CrossRefGoogle Scholar
  5. Angelini R, Bini LM, Starling FLRM (2008) Efeitos de diferentes intervenções no processo de eutrofização do lago Paranoá (Brasília - DF). Oecologia Brasiliensia 12(3):564–571CrossRefGoogle Scholar
  6. APHA - American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association, WashingtonGoogle Scholar
  7. Bartoszek L, Tomaszek JA (2007) Phosphorus distribution in the bottom sediments of the Solina–Myczkowce reservoirs. Environ Prot Eng 33(2):25–33Google Scholar
  8. Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138CrossRefGoogle Scholar
  9. Bergamaschi BA, Tsamakis E, Ceil RG, Eglinton TI, Montlucon DB, Hedges JI (1997) The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim Cosmochim Acta 61(6):1247–1260CrossRefGoogle Scholar
  10. Boyle JF (2001) Inorganic geochemical methods in palaeolimnology. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic, New York, pp 83–142Google Scholar
  11. Brenner M, Hodell DA, Leyden BW, Curtis JH, Kenney WF, Binhe G, Newman JM (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte-dominated lake. J Paleolimnol 35:129–148CrossRefGoogle Scholar
  12. Cardoso-Silva S, Ferreira PAL, Moschini-Carlos V, Figueira RCL, Pompeo MLM (2016a) Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ Earth Sci 75:1–16CrossRefGoogle Scholar
  13. Cardoso-Silva S, Silva DCVR, Lage F, Rosa AH, Moschini-Carlos V, Pompeo MLM (2016b) Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply. Environ Monit Asses 188:310CrossRefGoogle Scholar
  14. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  15. Cetesb - Companhia de Tecnologia de Saneamento Ambiental (2002 to 2015) Qualidade das águas superficiais no Estado de São Paulo. CETESB: São Paulo. http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios. Accessed 30 June 2016
  16. Cochran JK, Hirschberg DJ, Wang J, Dere C (1998) Atmospheric deposition of metals to coastal waters (Long Island Sound, New York U.S.A.): evidence from saltmarsh deposits. Estuar Coast Shelf Sci 46:503–522CrossRefGoogle Scholar
  17. Cunha DGF, Casali SP, Falco PB, Thornhill I, Loiselle SA (2017) The contribution of volunteer-based monitoring data to the assessment of harmful phytoplankton blooms in Brazilian urban streams. Sci Tot Environ 584-585:586–594CrossRefGoogle Scholar
  18. Dadi T, Wendt-Potthoff K, Koschorreck M (2017) Sediment resuspension effects on dissolved organic carbon fluxes and microbial metabolic potentials in reservoirs. Aquat Sci 79:749CrossRefGoogle Scholar
  19. Dittrich A, Chesnyuk A, Gudimov J, McCulloch S, Quazi J, Young J, Winter E, Stainsby GA (2013) Phosphorus retention in a mesotrophic lake under transient loading conditions: insights from a sediment phosphorus binding form study. Water Res 47:1433–1447CrossRefGoogle Scholar
  20. Eillers JM, Kann J, Cornett J, Moser K, St. Amand A (2004) Paleolimnological evidence of change in a shallow, hypereutrophic lake: Upper Klamath Lake, Oregon, USA. Hydrobiol 520:7–18CrossRefGoogle Scholar
  21. Elser JJ, Andersen T, Baron JS, Bergstrom AK, Jansson M, Kyle M (2009) Shifts in Lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326(5954):835–837CrossRefGoogle Scholar
  22. EMPLASA. Empresa Metropolitana de Planejamento da Grande São Paulo (2006) Metrópoles em Dados. EMPLASA, São PauloGoogle Scholar
  23. Esteves FA (2011) Limnologia. INEP: Interciência, Rio de JaneiroGoogle Scholar
  24. Fonseca TR, Canário MM, Barriga FJAS (2011) Phosphorus sequestration in Fe-rich sediments from two Brazilian tropical reservoirs. Appl Geochem 26:1607–1622CrossRefGoogle Scholar
  25. Frascareli D, Cardoso-Silva S, Mizael JO, Lopez-Doval J, Pompêo MLM, Moschini-Carlos V (2018) Spatial distribution, bioavailability, and toxicity of metals in surface sediments of tropical reservoirs, Brazil. Environ Monit Asses 190:1–15CrossRefGoogle Scholar
  26. Froehner S, Martins RF (2008) Avaliação da composição química de sedimentos do Rio Barigüi na Região Metropolitana de Curitiba. Quim Nova 31(8):2020–2026CrossRefGoogle Scholar
  27. Giatti LL (2000) Reservatório Paiva Castro – Mairiporã – SP. Avaliação da qualidade da água sobre alguns parâmetros físicos, químicos e biológicos (1987–1998). FSP, USP, São Paulo, p. 87Google Scholar
  28. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  29. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324(5927):636–638CrossRefGoogle Scholar
  30. Hayakawa A, Ikeda S, Tsushima R, Ishikawa Y, Hidaka S (2015) Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena 133:486–494CrossRefGoogle Scholar
  31. He J, Lu C, Fan Q, Xue H, Bao J (2011) Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environ Earth Sci 64:2025–2037CrossRefGoogle Scholar
  32. Hedges JI, Oades JM (1997) Comparative organic geochemistry of soils and marine sediments. Org Geochem 27(7/8):319–361CrossRefGoogle Scholar
  33. Holligan SG, Montoya JP, Nevins JL, McCarthy JJ (1984) Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar Ecol Prog Ser 14:111–127CrossRefGoogle Scholar
  34. Hou D, He J, Lu C, Dong S, Wang J, Xie Z, Zhang F (2014) Spatial variations and distributions of phosphorus and nitrogen in bottom sediments from a typical north-temperate lake, China. Environ Earth Sci 71:3063–3079.  https://doi.org/10.1007/s12665-013-2683-6 CrossRefGoogle Scholar
  35. Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron: phosphorus ratio in surface sediments as an indicator of phosphorus release from aerobic sediments in shallow lakes. Hydrobiologia 235(236):731–743CrossRefGoogle Scholar
  36. Jia X, Luo W, Wu X, Wei H, Wang B, Phyoe W, Wang F (2017) Historical record of nutrients inputs into the Xin’an Reservoir and its potential environmental implication. Environ Sci Pollut Res 24:20330–20341CrossRefGoogle Scholar
  37. Katsev S, Tsandev I, Heureux I, Rancourt DG (2006) Factors controlling long-term phosphorus efflux from lake sediments: exploratory reactive-transport modeling. Chem Geol 234:127–147CrossRefGoogle Scholar
  38. Kimmel BL, Lind OT, Paulson LJ (1990) Reservoir primary production. In: Thorton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspectives. John Wiley, New York, pp 133–193Google Scholar
  39. Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33(6):1441–1450CrossRefGoogle Scholar
  40. Ladwig R, Heinrich L, Singer G, Hupfer M (2017) Sediment core data reconstruct the management history and usage of a heavily modified urban lake in Berlin, Germany. Environ Sci Pollut Res 24(32):25166–25178CrossRefGoogle Scholar
  41. Lamparelli MC (2004) Graus de trofia em corpos d’água do Estado de São Paulo: avaliação dos métodos de monitoramento. Doctoral thesis - Universidade de São PauloGoogle Scholar
  42. Liu JY, Wang H, Yang HJ, Ma YJ, Cai OC (2009) Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environ Pollut 157(1):49–56CrossRefGoogle Scholar
  43. Liu SM, De Zhu B, Zhang J, Wu Y, Liu GS, Deng B, Zhao MX, Liu GQ, Du JZ, Ren JL, Zhang GL (2010) Environmental change in Jiaozhou Bay recorded by nutrient components in sediments. Mar Pollut Bull 60:1591–1599CrossRefGoogle Scholar
  44. Mackereth FJH (1966) Some chemical observations on post-glacial lake sediments. Phil Trans R Soc Lond B250:165–213CrossRefGoogle Scholar
  45. Matta AL (2016) Dinâmica do plâncton na represa Paiva Castro (Sistema Cantateira, Mairiporã, São Paulo, Brasil. Master thesis - Universidade de São PauloGoogle Scholar
  46. Meguro M (2000) Métodos em Ecologia. São Paulo. Apostila de Metodologias para a disciplina BIE - 321 Ecologia Vegetal. Instituto de Biociências, USP, São PauloGoogle Scholar
  47. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302CrossRefGoogle Scholar
  48. Molinaroli E, Guerzoni S, De Falco G, Sarretta A, Cucco A, Como S, Simeone S, Perilli A, Magni P (2009) Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: the Lagoons of Venice and Cabras, Italy. Sediment Geol 219(1):196–207CrossRefGoogle Scholar
  49. Moreira SRD, Fávaro DIT, Campagnoli F, Mazzili BP (2002) Sedimentations from the reservoir Rio Grande (São Paulo/ Brasil). In: Warwick P (ed) Environmental radiochemical analysis II. Royal Society of Chemistry, Maidstone, pp 383–390Google Scholar
  50. Moschini-Carlos V, Bortoli S, Pinto E, Nishimura PY, Pompêo M (2009) Cyanobacteria and cyanotoxin in the Billings Reservoir (São Paulo, SP, Brazil). Limnética 31:227–236Google Scholar
  51. Nogueira MG, Henry R, Maricatto FE (1999) Spatial and temporal heterogeneity in the Jurumirim reservoir, São Paulo, Brazil. Lakes Reserv Res Manag 4(3–4):107–120CrossRefGoogle Scholar
  52. Oluyedun OA, Ajayi SO, Van Loon GW (1991) Methods for fractionation of organic phosphorus in sediments. Sci Tot Environ 106:243–252CrossRefGoogle Scholar
  53. Ortega DJP, Pérez DA, Américo JHP, Carvalho SL, Segovia JA (2016) Development of index of resilience for surface water in watersheds. JUEE 10(1):72–82CrossRefGoogle Scholar
  54. Perkins RG, Underwood GJ (2001) The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Res 35(6):1399–1406CrossRefGoogle Scholar
  55. Persaud D, Jaagumagi R, Hayton A (1993) Guidelines for the protection and management of aquatic sediment quality in Ontario. Water Resources Branch, Ontario Ministry of the Environment, TorontoGoogle Scholar
  56. Piper CS (1947) Soil and plant analysis. Interscience Publishers, New YorkGoogle Scholar
  57. Pires DA, Tucci A, Carmo-Carvalho M, Lamparelli MC (2015) Water quality in four reservoirs of the metropolitan region of São Paulo, Brazil. Acta Limnol Bras 27(4):370–380CrossRefGoogle Scholar
  58. Piwińska D, Gruca-Rokosz R, Bartoszek L, Czarnota J (2018) Spatial diversity characterising certain chemical substances in sediments of Besko Reservoir. JEE 19(1):104–112Google Scholar
  59. Pompêo MLM, Moschini-Carlos V, Lopez-Doval JC, Abdalla-Martins N, Cardoso-Silva S, Freire RHF, Beghelli FGS, Brandimarte AL, Rosa AH, López P (2017) Nitrogen and phosphorus in cascade multi-system tropical reservoirs: water and sediment. Limnol Rev 17(3):133–150CrossRefGoogle Scholar
  60. Ribeiro DC, Martins G, Nogueira R, Cruz JV, Brito AG (2008) Phosphorus fractionation in volcanic lake sediments (Azores, Portugal). Chemosphere 70(7):1256–1263CrossRefGoogle Scholar
  61. Rippey B, Anderson NJ (2008) The accuracy of methods used to estimate the whole-lake accumulation rate of organic carbon, major cations, phosphorus and heavy metals in sediment. J Paleolimnol 39:83–99CrossRefGoogle Scholar
  62. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304CrossRefGoogle Scholar
  63. Ruttenberg KC, Gofii MA (1997) Phosphorus distribution, C:N:P ratios, and 613C, in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Mar Geol 139:123–145CrossRefGoogle Scholar
  64. Rydin E (2000) Potentially mobile phosphorus in Lake Erken sediment. Water Res 34(34):2037–2042CrossRefGoogle Scholar
  65. SABESP- Companhia de Saneamento Básico do Estado de São Paulo (2018) SABESP, São PauloGoogle Scholar
  66. Santos JCN, de Andrade EM, de Araújo Neto JR, Meireles ACM, de Queiroz Palácio HA (2014) Land use and trophic state dynamics in a tropical semi-arid reservoir. Rev Ciên Agron 45(1):35–44CrossRefGoogle Scholar
  67. Silva EAS (2002) Eutrofização no Reservatório Paiva Castro do Sistema Cantareira na Região Metropolitana de São Paulo (1987-1997). São Paulo, FSP- USP, p 135Google Scholar
  68. Smal H, Ligęza S, Baran S, Ojcikowska-KapustaA OR (2013) Nitrogen and phosphorus in bottom sediments of two small dam reservoirs. Pol J Environ Stud 22(5):1479–1489Google Scholar
  69. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trend Ecol Evol 24(4):201–207CrossRefGoogle Scholar
  70. Smol JP (2008) Pollution of lakes and rivers- a paleoenvironmental perspective. Blackwell, Oxford, 382 ppGoogle Scholar
  71. Strickland JD, Parsons TR (1960) A manual of seawater analysis. Bull Fish Res Board Can (125):1–185Google Scholar
  72. US EPA United States Environmental Protection Agency (1996) Method 3050B. Acid digestion of sediments, sludges and soil. Revision 2. Washington DCGoogle Scholar
  73. Wang J, Chen J, Ding S, Guo J, Christopher D, Dai Z, Yang H (2016) Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: a case study in Hongfeng Reservoir, Southwest China. Environ Pollut 219:858–865CrossRefGoogle Scholar
  74. Wetzel RG (2001) Limnology- lake and river ecosystems. Academic Press, California, 1066 ppGoogle Scholar
  75. Whately M, Cunha PM (2007) Cantareira 2006: Um olhar sobre o maior manancial de água da Região Metropolitana de São Paulo - Resultados do diagnóstico socioambiental participativo do Sistema Cantareira. Instituto Sócio Ambiental, São PauloGoogle Scholar
  76. Zan F, Huo S, Xi B, Zhu C, Liao H, Zhang J, Yeager KM (2012) A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China. J Environ Monit 14:804–816CrossRefGoogle Scholar
  77. Zhang RY, Wu F, Fu P, Li W, Wang L, Liao H, Guo J (2008) Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environ Pollut 152:366–372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sheila Cardoso-Silva
    • 1
  • Paulo Alves de Lima Ferreira
    • 2
  • Rubens César Lopes Figueira
    • 2
  • Daniel Clemente Vieira Rêgo da Silva
    • 3
  • Viviane Moschini-Carlos
    • 1
  • Marcelo L. M. Pompêo
    • 3
  1. 1.Environmental Sciences ProgramSão Paulo State University – UNESPSorocabaBrazil
  2. 2.Chemistry Department, Institute of OceanographyUniversity of São PauloSão PauloBrazil
  3. 3.Ecology Department, Institute of BiosciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations