Environmental Science and Pollution Research

, Volume 25, Issue 28, pp 28169–28184 | Cite as

Mathematical simulation to improve municipal solid waste leachate management: a closed landfill case

  • Ana LópezEmail author
  • Tatiana Calero
  • Amaya Lobo
Research Article


This article presents an example of the application of simulation tools to estimate the post-closure evolution of leachate in a non-hazardous waste landfill. The objective of this work is to predict the behavior of leachate after the closure of the landfill for use as basic information with which to design the leachate management strategy in the following years. The MODUELO 4.0 mathematical landfill simulation software package was used for this purpose. The results of the simulation show that the concentrations in the leachate increase during the post-closure period, from values close to 2200 mg/L of COD and 1500 mg/L of NH4+ at the time of landfill closure to 3200 mg/L of COD and 5300 mg/L of NH4+ 20 years later. This increase is mainly due to the reduction in the flows, from 105 to 17 m3/day on average, since the surface lining was installed. Consequently, pollutant fluxes decrease to values below 100 kg/day in both COD and NH4+ 3 months after closure. This evolution indicates that the management of this leachate will be simpler in the future, especially if it is co-treated with urban wastewater, as its contribution decreases. On the other hand, external water connections to the leachate collectors may cause a relevant increase in the volume of the global landfill effluent. Controlling runoff management and underground infiltrations could lead to important savings in leachate treatment during the aftercare phase.


Surface lining Emissions Modelling Co-treatment Ammonia Chemical oxygen demand 


  1. Anfruns A, Gabarró J, Gonzalez-Olmos R, Puig S, Balaguer MD, Colprim J (2013) Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J Hazard Mater 258–259:27–34. CrossRefGoogle Scholar
  2. Babu GLS, Reddy KR, Chouskey SK, Kulkarni HS (2010) Prediction of long-term municipal solid waste landfill settlement using constitutive model. Pract Period Hazard Toxic Radioact Waste Manag 14:139–150. CrossRefGoogle Scholar
  3. Barlaz MA, Rooker AP, Kjeldsen P, Gabr MA, Borden RC (2002) Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ Sci Technol 36:3457–3464. CrossRefGoogle Scholar
  4. Benson CH, Albright WH, Fratta DO et al (2011) Engineered covers for waste containment: changes in engineering properties and implications for long-term performance assessment Office of Nuclear Regulatory Research. Washington, D.C.Google Scholar
  5. Berger KU (2015) On the current state of the hydrologic evaluation of landfill performance (HELP) model. Waste Manag 38:201–209. CrossRefGoogle Scholar
  6. Carley BN, Mavinic DS (1990) The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. Res J Water Pollut Control Fed 63:51–59Google Scholar
  7. Chu LM, Cheung KC, Wong MH (1994) Variations in the chemical properties of landfill leachate. Environ Manag 18:105–117. CrossRefGoogle Scholar
  8. Cuartas M (2012) Optimización del diseño de vertederos de residuos sólidos basada en modelización. Ph.D.Thesis, University of Cantabria, SpainGoogle Scholar
  9. Cuartas M, López A, Pérez F, Lobo A (2018) Analysis of landfill design variables based on scientific computing. Waste Manag 71:287–300. CrossRefGoogle Scholar
  10. Denning PJ (2000) Computer science: the discipline. In: Encyclopedia of Computer ScienceGoogle Scholar
  11. Di Palma L, Ferrantelli P, Merli C, Petrucci E (2002) Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Manag 22:951–955. CrossRefGoogle Scholar
  12. Erses AS, Fazal MA, Onay TT, Craig WH (2005) Determination of solid waste sorption capacity for selected heavy metals in landfills. J Hazard Mater 121:223–232. CrossRefGoogle Scholar
  13. European Council (1999) Directive 1999/31/EC on the landfill of waste. Off J Eur Union L 182:1–19Google Scholar
  14. Fan HJ, Shu HY, Yang HS, Chen WC (2006) Characteristics of landfill leachates in central Taiwan. Sci Total Environ 361:25–37. CrossRefGoogle Scholar
  15. Ferraz FM, Povinelli J, Pozzi E, Vieira EM, Trofino JC (2014) Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter. J Environ Manag 141:9–15. CrossRefGoogle Scholar
  16. Ferraz FM, Bruni AT, Povinelli J, Vieira EM (2016) Leachate/domestic wastewater aerobic co-treatment: a pilot-scale study using multivariate analysis. J Environ Manag 166:414–419. CrossRefGoogle Scholar
  17. Ganigué R, López H, Balaguer MD, Colprim J (2007) Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates. Water Res 41:3317–3326. CrossRefGoogle Scholar
  18. Gawande NA, Reinhart DR, Yeh GT (2010) Modeling microbiological and chemical processes in municipal solid waste bioreactor, part II: application of numerical model BIOKEMOD-3P. Waste Manag 30:211–218. CrossRefGoogle Scholar
  19. Gibbons RD, Morris JWF, Prucha CP, Caldwell MD, Staley BF (2014) Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills. Waste Manag 34:1674–1682. CrossRefGoogle Scholar
  20. Grisey E, Aleya L (2016) Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics. Environ Sci Pollut Res 23:800–815. CrossRefGoogle Scholar
  21. Huber WC, Dickinson RE (1988) Storm water management model; version 4. Environmental Protection Agency, United StatesGoogle Scholar
  22. Hullings D (2017) The benefits of exposed geomembrane covers for intermediate applications at landfills. In: Brandon TL, Valentine RJ (eds) Geotechnical frontiers 2017. ASCE, Orlando, pp 251–258CrossRefGoogle Scholar
  23. Jianguo J, Yong Y, Shihui Y, Bin Y, Chang Z (2010) Effects of leachate accumulation on landfill stability in humid regions of China. Waste Manag 30:848–855. CrossRefGoogle Scholar
  24. Kalčíková G, Zagorc-Končan J, Zupančič M, Gotvajn AŽ (2012) Variation of landfill leachate phytotoxicity due to landfill ageing. J Chem Technol Biotechnol 87:1349–1353. CrossRefGoogle Scholar
  25. Kamalan H, Sabour M, Shariatmadari N (2011) A review on available landfill gas models.pdf. J Environ Sci Technol 4:79–92. CrossRefGoogle Scholar
  26. Kamaruddin MA, Yusoff MS, Rui LM, Isa AM, Zawawi MH, Alrozi R (2017) An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ Sci Pollut Res 24:26988–27020. CrossRefGoogle Scholar
  27. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. CrossRefGoogle Scholar
  28. Koda E, Zakowicz S (1999) Physical and hydraulic properties of the MSW for water balance of the landfill, Sêco e Pin. Rotterdam, HollandGoogle Scholar
  29. Laner D, Fellner J, Brunner PH (2011) Future landfill emissions and the effect of final cover installation—a case study. Waste Manag 31:1522–1531. CrossRefGoogle Scholar
  30. Lo IMC (1996) Characteristics and treatment of leachates from domestic landfills. Environ Int 22:433–442. CrossRefGoogle Scholar
  31. Lobo A, Tejero I (2007a) MODUELO 2: a new version of an integrated simulation model for municipal solid waste landfills. Environ Model Softw 22:59–72. CrossRefGoogle Scholar
  32. Lobo A, Tejero I (2007b) Application of simulation models to the diagnosis of MSW landfills: an example. Waste Manag 27:691–703. CrossRefGoogle Scholar
  33. Lobo A, López A, Cobo N (2011) Modeling of biodegradation in an old unregulated European landfill. J Environ Eng 137:93–96. CrossRefGoogle Scholar
  34. Lobo A, Herrero J, Montero O et al (2002a) Modelling for environmental assessment of municipal solid waste landfills (part 1: hydrology). Waste Manag Res 20:198–210. CrossRefGoogle Scholar
  35. Lobo A, Herrero J, Montero O et al (2002b) Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation). Waste Manag Res 20:514–528. CrossRefGoogle Scholar
  36. Lopez A, Pagano M, Volpe A, Di Pinto AC (2004) Fenton’s pre-treatment of mature landfill leachate. Chemosphere 54:1005–1010. CrossRefGoogle Scholar
  37. López A, Cobo N, Tejero I, Lobo A (2008) Simulation of municipal solid waste reactors using Moduelo. Proc ICE Waste Resour Manag 161:99–104. CrossRefGoogle Scholar
  38. López A, Cobo N, Cuartas M, Lobo A (2009) Estimating the future emissions of an old landfill by simulation. In: Proceedings Sardinia 2009, Twelfth International Waste Management and Landfill Symposium. CISA Publisher, S. Margherita di Pula, CagliariGoogle Scholar
  39. López A, Gonzalorena R, Cuartas M, Lobo A (2012) Modelación de una celda vertedero experimental con Moduelo 4.0. Rev Int Contam Ambient 28(1):89–96Google Scholar
  40. Lou Z, Dong B, Chai X et al (2009) Characterization of refuse landfill leachates of three different stages in landfill stabilization process. J Environ Sci 21:1309–1314. CrossRefGoogle Scholar
  41. McDougall J (2007) A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput Geotech 34:229–246. CrossRefGoogle Scholar
  42. Mishra H, Karmakar S (2018) A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems. Environ Sci Pollut Res Int 25:2911–2923. CrossRefGoogle Scholar
  43. Morris JWF, Barlaz MA (2011) A performance-based system for the long-term management of municipal waste landfills. Waste Manag 31:649–662. CrossRefGoogle Scholar
  44. Oweis IS, Smith DA, Ellwood RB, Greene DS (1990) Hydraulic characteristics of municipal refuse. J Geotech Eng 116:539–553. CrossRefGoogle Scholar
  45. Price GA, Barlaz MA, Hater GR (2003) Nitrogen management in bioreactor landfills. Waste Manag 23:675–688. CrossRefGoogle Scholar
  46. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493. CrossRefGoogle Scholar
  47. Robqeck M, Ricken T, Widmann R (2011) A finite element simulation of biological conversion processes in landfills. Waste Manag 31:663–669. CrossRefGoogle Scholar
  48. Rosqvist H, Destouni G (2000) Solute transport through preferential pathways in municipal solid waste. J Contam Hydrol 46:39–60. CrossRefGoogle Scholar
  49. Rowe RK, Islam MZ (2009) Impact of landfill liner time-temperature history on the service life of HDPE geomembranes. Waste Manag 29:2689–2699. CrossRefGoogle Scholar
  50. Sanchez R, Tsotsis TT, Sahimi M (2010) Computer simulation of gas generation and transport in landfills. IV. Modeling of liquid-gas flow. Chem Eng Sci 65:1212–1226. CrossRefGoogle Scholar
  51. Schiopu AM, Gavrilescu M (2010) Options for the treatment and management of municipal landfill leachate: common and specific issues. Clean - Soil Air Water 38:1101–1110. CrossRefGoogle Scholar
  52. Schroeder PR, Dozier TS, Zappi PA et al (1994) The hydrologic evaluation of landfill performance (HELP) model. Engineering documentation for version 3. Environmental Protection Agency, United StatesGoogle Scholar
  53. Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337:119–137. CrossRefGoogle Scholar
  54. Stegmann R, Heyer K, Cossu R (2005) Leachate treatment. Tenth Int Waste Manag Landfill SympGoogle Scholar
  55. Tatsi A, Zouboulis A (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv Environ Res 6:207–219. CrossRefGoogle Scholar
  56. Tchobanoglous G, Theisen H, Vigil SA (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, LondonGoogle Scholar
  57. Wang Y, Pelkonen M, Kaila J (2012) Optimization of landfill leachate management in the aftercare period. Waste Manag Res 30:789–799. CrossRefGoogle Scholar
  58. White JK, Nayagum D, Beaven RP (2014) A multi-component two-phase flow algorithm for use in landfill processes modelling. Waste Manag 34:1644–1656. CrossRefGoogle Scholar
  59. Wu JJ, Wu CC, Ma HW, Chang CC (2004) Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere 54:997–1003. CrossRefGoogle Scholar
  60. Yuan Q, Jia H, Poveda M (2016) Study on the effect of landfill leachate on nutrient removal from municipal wastewater. J Environ Sci (China) 43:153–158. CrossRefGoogle Scholar
  61. Zhao R, Gupta A, Novak JT, Goldsmith CD (2017) Evolution of nitrogen species in landfill leachates under various stabilization states. Waste Manag 69:225–231. CrossRefGoogle Scholar
  62. Ziyang L, Youcai Z, Tao Y, Yu S, Huili C, Nanwen Z, Renhua H (2009) Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Sci Total Environ 407:3385–3391. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water and Environment Sciences and Techniques, Environmental Engineering GroupUniversity of CantabriaSantanderSpain

Personalised recommendations