Environmental Science and Pollution Research

, Volume 25, Issue 28, pp 28312–28321 | Cite as

In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil

  • Carolina F. Demarco
  • Thays F. Afonso
  • Simone Pieniz
  • Maurízio S. Quadro
  • Flávio A. O. Camargo
  • Robson AndreazzaEmail author
Research Article


Aquatic environments are widely affected by anthropogenic activities and efficient remediation of these areas requires detailed studies for each natural ecosystem. This research aimed to evaluate the natural phytoremediation potential of Hydrocotyle ranunculoides L., a floating aquatic macrophyte located in a polluted aquatic environment in South of the Rio Grande do Sul, Brazil. Nutrients such as P, K, Ca, Mg, and S and heavy metals such as Cu, Zn, Fe, Mn, Na, Cd, Cr, Ni, Pb, Al, As, Co, and V content in the roots and shoots of the plants were evaluated through nitric perchloric acid digestion (HNO3-HClO4) methods and quantified by ICP-OES. Bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and potential phytoremoval (mg m−2) were carried out. H. ranunculoides showed a substantial ability for phytoextracting P, Na, and As, since showed ability of uptake these elements from the water and translocate them to the shoots of the plants. H. ranunculoides also showed potential for application in rhizofiltration of Mg, S, Cu, Zn, Fe, Mn, Cd, Cr, Ni, Pb, Al, and V, since exhibited high potential to uptake higher levels in the roots. The highest potential for bioremoval (mg m−2) of the H. ranunculoides was detected for K, Ca, P (recommending thus the use for phytoextraction), Fe, and Al (highly recommended for rhizofiltration). Therefore, this species under study showed high potential for in situ phytoremediation at Santa Bárbara stream, and as a widespread species, it might be tested for phytoremediation in other sites.


Phytoremoval Aquatic floating macrophyte Phytoextraction Rhizofiltration Contamination Aquatic 



Thanks to the CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technological Development), and FAPERGS (Research Support Foundation of the State of Rio Grande do Sul) for the scholarships and the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali H, Khan E, Sajadm A (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. CrossRefGoogle Scholar
  2. APHA. American Public Health Association (2005) Standard methods for the examination of water and wastewater, Washington DCGoogle Scholar
  3. Auguet S, Arreghini S, Serafini RJM, Arambarri A, Iorio AF (2017) Efecto del stress por plomo em Ludwigia peploides e Hydrocotyle ranunculoides. Biología Acuática 32:1–15 (in Spanish)Google Scholar
  4. Azhari AE, Rhoujjati A, Hachimi MLE, Ambrosi J (2017) Ecotoxicology and environmental safety pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicol Environ Saf 144:464–474. CrossRefGoogle Scholar
  5. Basílico GO, Cabo LDE, Faggi A (2015) Adaptación de índices de calidad de agua y de riberas para la evaluación ambiental en dos arroyos de la llanura pampeana. Rev Mus Argentino Cienc Nat 17(2):119–134 (in Spanish)Google Scholar
  6. Basílico G, Magdaleno A, Paz M, Moretton J, Faggi A, Cabo L (2017) Sewage pollution: genotoxicity assessment and phytoremediation of nutrients excess with Hydrocotyle ranunculoides. Environ Monit Assess 189:182. CrossRefGoogle Scholar
  7. Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation 18(1):25–32. CrossRefGoogle Scholar
  8. Bonanno G, Vymazal J (2017) Compartmentalization of potentially hazardous elements in macrophytes: insights into capacity and efficiency of accumulation. J Geochem Explor 181:22–30. CrossRefGoogle Scholar
  9. BRASIL, Resolução CONAMA 357, de 17 de março de 2005. Ministério do Meio Ambiente. Classificação de águas, doces, salobras e salinas do Território Nacional (in Portuguese)Google Scholar
  10. Cabo L (2015) On-site and full-scale applications of phytoremediation to repair aquatic ecosystems with metal excess. Phytoremediation 2:27–40. CrossRefGoogle Scholar
  11. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. CrossRefGoogle Scholar
  12. Gao L, Wang Z, Shan J, Chen J, Tang C, Yi M (2017) Aquatic environmental changes and anthropogenic activities re fl ected by the sedimentary records of the Shima River, Southern China. Environ Pollut. CrossRefGoogle Scholar
  13. Gasmi T, Khouni I, Ghrabi A (2016) Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia). Desalin Water Treat 57(46):1–14. CrossRefGoogle Scholar
  14. Hair Jr JF, Anderson RE, Tatham RL, Black WC (2005) Análise Multivariada de Dados. Porto Alegre: BookmanGoogle Scholar
  15. Irgang BE, Gastal JR (1996) Macrófitas Aquáticas da Planície Costeira do Rio Grande do Sul. UFRGS, Porto Alegre Ed Dos Autores. (in Portuguese)Google Scholar
  16. Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7(2):889–896. CrossRefGoogle Scholar
  17. Juárez A, Arribére MA, Arcagni M, Williams N, Rizzo A, Guevara SR (2016) Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ Sci Pollut Res 23(18):17995–18009. CrossRefGoogle Scholar
  18. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  19. Korb CC, Suertegaray DMA (2014) Identification of the technogenic deposits in water supply reservoir in the city of Pelotas (RS). Quat Environ Geosci 5(1):41–54Google Scholar
  20. Kumwimba MN, Zhu B, Suanon F, Kavidiamuyembe D, Dzakpasu M (2017) Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: implications for phytoremediation and restoration. Sci Total Environ. CrossRefGoogle Scholar
  21. Leguizamo MAO, Gomez WDF, Sarmiento MCG (2016) Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—a review. Chemosphere 168:1230–1247. CrossRefGoogle Scholar
  22. Liu S-H, Zeng G-M, Niu Q-Y, Liu Y, Zhou L, Jiang L-H, Tan X-F, Xu P, Zhang C, Cheng M (2016) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33. CrossRefGoogle Scholar
  23. Luo L, Duan N, Wang XC, Guo W, Ngo HH (2017) New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment. Sci Total Environ 603:86–93. CrossRefGoogle Scholar
  24. Nguyen TC, Loganathan P, Nguyen TV, Kandasamy J, Naidu R, Vigneswaran R (2017) Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environ Sci Pollut Res. CrossRefGoogle Scholar
  25. Patidar K, Chouhan A, Thakur LS (2017) Removal of heavy metals from water and waste water by electrocoagulation process—a review. Int Res J Eng Technol 4(11):16–25Google Scholar
  26. Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal, 1st edn. EMBRAPA, Corumbá (in Portuguese)Google Scholar
  27. Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599. CrossRefGoogle Scholar
  28. Rizzo PF, Arreghini S, Serafini RJM, Bres PA, Crespo DE, Iorio ARF (2012) Remediation of feedlot effluents using aquatic plants Remediación de efluentes provenientes de feedlots mediante. Revista de la Facultad de Ciencias Agrarias 44(2):47–64Google Scholar
  29. Rubio DIC, Delgado DR, Amaya AO (2016) Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Producción + Limpia 11(2):126–149. (in Spanish)CrossRefGoogle Scholar
  30. Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Kasamatsu T, Sakurai Y (2012) Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol Eng 39:63–70. CrossRefGoogle Scholar
  31. SQA (2013) Environmental plan of Pelotas. Secretaria de Qualidade Ambiental (in Portuguese)Google Scholar
  32. Suelee AL, Hasan SNMS, Kusin FM, Yusuff FM, Ibrahim ZZ (2017) Phytoremediation potential of vetiver grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water Air Soil Pollut 228(4):158–173. CrossRefGoogle Scholar
  33. Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99(5):1103–1110. CrossRefGoogle Scholar
  34. Tang Y, Harpenslager SF, Kempen MML, Verbaarschot EJH, Loeffen LMJM, Roelofs JGM, Smolders AJP, Lamers LPM (2017) Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences 14:755–766. CrossRefGoogle Scholar
  35. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (as, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Eng 1:1–31CrossRefGoogle Scholar
  36. Von Sperling M (2007) Estudos de modelagem da qualidade da água de rios. Belo Horizonte, UFMG (in Portuguese)Google Scholar
  37. Walsh GC, Maestro M (2017) Assessing the specificity of a herbivore on a plant of uncertain phylogenetic placing : Listronotus elongatus a herbivore of Hydrocotyle ranunculoides. BioControl 62(2):269–279. CrossRefGoogle Scholar
  38. Yang J, Zheng G, Yang J, WanX SB, Cai W, Guo J (2017) Phytoaccumulation of heavy metals (Pb, Zn, and cd) by 10 wetland plant species under different hydrological regimes. Ecol Eng 107:56–64. CrossRefGoogle Scholar
  39. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. CrossRefGoogle Scholar
  40. Zarazúa G, Ávila-Pérez P, Tejeda S, Valdivia-Barrientos M, Zepeda-Gómez C, Macedo-Miranda G (2013) Evaluación de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Río Lerma, México. Rev Int Contam Amb 29(2):17–24 (in Spanish)Google Scholar
  41. Zhang Z, Tao F, Dua J, Shi P, Yu D, Meng Y, Sun Y (2010) Surface water quality and its control in a river with intensive human impacts—a case study of the Xiangjiang River, China. J Environ Manag 91:2483–2490. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Postgraduate Program at Environmental SciencesCenter of EngineeringPelotasBrazil
  2. 2.Department of Soil Science, Agronomy FacultyFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations