Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30671–30679 | Cite as

Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting photosynthetic activity and antioxidative enzyme activities

  • Yi Tang
  • Yongdong Xie
  • Guochao Sun
  • Huaqiang Tan
  • Lijin Lin
  • Huanxiu Li
  • Ming’an Liao
  • Zhihui Wang
  • Xiulan Lv
  • Dong Liang
  • Hui Xia
  • Xun Wang
  • Jin Wang
  • Bo Xiong
  • Yangxia Zheng
  • Zhongqun He
  • Lihua Tu
Research Article

Abstract

The effects of application of straw derived from cadmium (Cd) accumulator plants (Siegesbeckia orientalis, Conyza canadensis, Eclipta prostrata, and Solanum photeinocarpum) on growth and Cd accumulation of lettuce plants grown under Cd exposure were studied. Treatment with straw of the four Cd-accumulator species promoted growth, photosynthesis, and soluble protein contents and enhanced the activities of peroxidase in leaves of lettuce seedlings. The biomass of shoot of lettuce from high to low in turn is the treatment of C. canadensis straw > S. photeinocarpum straw > S. orientalis > E. prostrata > Control. The Cd content in edible parts (shoots) of the lettuce plants was significantly decreased in the presence of straw from the Cd-accumulator species, except the presence of the straw of E. prostrata. And, the greatest reduction in Cd content in shoots was 27.09% in the S. photeinocarpum straw treatment compared with that of the control. Therefore, application of straw of S. orientalis, C. canadensis, and S. photeinocarpum can promote the growth of lettuce seedlings, and decrease their Cd accumulation, when grown in Cd-contaminated soil, which is beneficial for production of lettuce safe for human consumption.

Keywords

Accumulator straw Cadmium Conyza canadensis Eclipta prostrata Lactuca sativa Siegesbeckia orientalis Solanum photeinocarpum 

References

  1. Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MK, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197CrossRefGoogle Scholar
  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  3. Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77(1):36–44CrossRefGoogle Scholar
  4. Akoumianakis KA, Passam HC, Barouchas PE, Moustakas NK (2008) Effect of cadmium on yield and cadmium concentration in the edible tissues of endive (Cichorium endivia L.) and rocket (Eruca sativa Mill.). J Food Agric Environ 6(3–4):206–209Google Scholar
  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefGoogle Scholar
  6. Baldantoni D, Morra L, Zaccardelli M, Alfani A (2016) Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol Environ Saf 123:89–94CrossRefGoogle Scholar
  7. Bao YY, Wan Y, Zhou QX, Bao YJ, Li WM, Liu YX (2013) Competitive adsorption and desorption of oxytetracycline and cadmium with different input loadings on cinnamon soil. J Soils Sediments 13(2):364–374CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  9. Cheema ZA, Farooq M, Wahid A (2012) Allelopathy: current trends and future applications. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  10. Chen HS, Huang QY, Liu LN, Cai P, Liang W, Li M (2010) Poultry manure compost alleviates the phytotoxicity of soil cadmium: influence on growth of pakchoi (Brassica chinensis L.). Pedosphere 20:63–70CrossRefGoogle Scholar
  11. Feng JP, Shi QH, Wang XF, Min W, Yang FJ, Xu HN (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (cd) toxicity in Cucumis sativus L. Sci Hortic 123(4):521–530CrossRefGoogle Scholar
  12. Giannopolitis CN, Ries SK (1977) Superoxide dismutases, II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318CrossRefGoogle Scholar
  13. Gong B, Bloszies S, Li X, Wei M, Yang FJ, Shi QH, Wang XF (2013) Efficacy of garlic straw application against root-knot nematodes on tomato. Sci HorticAmsterdam 161:49–57CrossRefGoogle Scholar
  14. Haghighi M, Kafi M, Khoshgoftarmanesh A (2013) Effect of humic acid application on cadmium accumulation by lettuce leaves. J Plant Nutr 36(10):1521–1532CrossRefGoogle Scholar
  15. Han SS, Kim M, Lee SM, Lee JP, Kim S, Joo KW, Lim CS, Kim YS, Kim DK (2013) Cadmium exposure induces hematuria in Korean adults. Environ Res 124:23–27CrossRefGoogle Scholar
  16. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. BBA-Bioenergetics 1807(8):977–988CrossRefGoogle Scholar
  17. Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94CrossRefGoogle Scholar
  18. Hu XM, Yuan XS, Wang LP, Hua PY, Zhang TS (2012) Effects of phosphate fertilizer and rice straw on soil heavy metal fraction, microbial activity and phytoavailability. Res Environ Sci (in Chinese) 25:77–82Google Scholar
  19. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208CrossRefGoogle Scholar
  20. Kong L (2014) Maize residues, soil quality, and wheat growth in China. A review. Agron Sustain Dev 34:405–416CrossRefGoogle Scholar
  21. Kosterna E (2014) The effect of different types of straw mulches on weed-control in vegetables cultivation. J Ecol Eng 15:109–117Google Scholar
  22. Li Y, Yu LJ, Jin XX (2015) Mechanism of heavy metal tolerance stress of plants. Chin Biotecho (in Chinese) 35(9):94–104Google Scholar
  23. Li KQ, Lin LJ, Wang J, Xia H, Liang D, Wang X, Liao MA, Wang L, Liu L, Chen C, Tang Y (2017) Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale. Environ Monit Assess 189(8):374CrossRefGoogle Scholar
  24. Lin LJ, Liu QH, Shi J, Sun JL, Liao MA, Mei LY (2014a) Intercropping different varieties of radish can increase cadmium accumulation in radish. Environ Toxicol Chem 33:1950–1955CrossRefGoogle Scholar
  25. Lin LJ, Liao MA, Ren YJ, Luo L, Zhang X, Yang DY (2014b) Effects of mulching tolerant plant straw on soil surface on growth and cadmium accumulation of Galinsoga parviflora. PLoS One 9(12):e114957CrossRefGoogle Scholar
  26. Lin LJ, Liao MA, Mei LY, Cheng J, Liu J, Luo L, Liu Y (2014c) Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Environ Prog Sustain Energy 33:1251–1257Google Scholar
  27. Lin LJ, Yang DY, Tang FY, Luo L, Liao MA, Yuan L (2015) Effects of applying accumulator straw in soil on cadmium accumulation of Capsella Bursa-pastoris. Chin J Soil Sci (in Chinese) 46:483–488Google Scholar
  28. Lin LJ, Liao MA, Lv XL, Liang D, Xia H, Wang J, Wang X (2017) Addition of straw from hyperaccumulator plants to cadmium-contaminated soil increases cadmium uptake by loquat seedlings. Environ Monit Assess 189(5):217CrossRefGoogle Scholar
  29. Lin LJ, Chen FB, Wang J, Liao MA, Lv XL, Wang ZH, Li HX, Deng QX, Xia H, Liang D, Tang Y, Wang X, Lai YS, Ren W (2018) Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotoxicol Environ Saf 155:109–116CrossRefGoogle Scholar
  30. Liu Y, Vijver M, Peijnenburg WGM (2014a) Impacts of major cations (K+, Na+, Ca2+, Mg2+) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models. Ecotoxicology 23:385–395CrossRefGoogle Scholar
  31. Liu Y, Wang J, Liu DB, Li ZG, Zhang GS, Tao Y, Xie J, Pan JF, Chen F (2014b) Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards. PLoS One 9:e87094CrossRefGoogle Scholar
  32. Lukačová KZ, Lux A (2010) Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Bull Environ Contam Toxicol 85:243–250CrossRefGoogle Scholar
  33. Luo L, Lin LJ, Liao MA, Zhang X, Yang DY (2014) Cadmium accumulation characteristics of Eclipta prostrata L. Acta Agriculturae Boreali-Sinica (in Chinese) 29:216–220Google Scholar
  34. Mehmood F, Rashid A, Mahmood T, Dawson L (2013) Effect of DTPA on Cd solubility in soil-accumulation and subsequent toxicity to lettuce. Chemosphere 90:1805–1810CrossRefGoogle Scholar
  35. Monteiro M, Santos C, Soares AMVM, Mann RM (2008) Does subcellular distribution in plants dictate the trophic bioavailability of cadmium to Porcellio dilatatus (Crustacea, Isopoda)? Environ Toxicol Chem 27:111–119CrossRefGoogle Scholar
  36. Monteiro MS, Santos C, Soares AM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72:811–818CrossRefGoogle Scholar
  37. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54(1):45CrossRefGoogle Scholar
  38. Pedro SR, Engracia M, Paula M, Plaza C (2010) In situ remediation of metal contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere 79:844–849CrossRefGoogle Scholar
  39. Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bull Environ Contam Toxicol 85:515–519CrossRefGoogle Scholar
  40. Reinildes SF, Santos RHS, Tavares WDS, Leite GLD, Wilcken CF, Serrão JE, Zanuncio JC (2014) Rice-straw mulch reduces the green peach aphid, Myzus persicae (hemiptera: aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants. PLoS One 9:e94174CrossRefGoogle Scholar
  41. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Rehman MZ, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248CrossRefGoogle Scholar
  42. Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937Google Scholar
  43. Satarug S, Garrett SH, Sens A, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190CrossRefGoogle Scholar
  44. Sauvé S, Manna S, Turmel MC, Roy AG, Courchesne F (2003) Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ Sci Technol 37(22):5191–5196CrossRefGoogle Scholar
  45. Shan H, Su SM, Liu RL, Li ST (2016) Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Environ Sci Pollut Res 23:15208–15217CrossRefGoogle Scholar
  46. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50CrossRefGoogle Scholar
  47. Song A, Li ZJ, Zhang J, Xue GF, Fan FL, Liang YC (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172(1):74–83CrossRefGoogle Scholar
  48. Takahama U, Egashira T (1991) Peroxidases in vacuoles of Vicia faba leaves. Phytochemistry 30:73–77CrossRefGoogle Scholar
  49. Tang FY, Lin LJ, Liao J, Liao MA, He J, Yang DY, Zhang (2015) Effects of applying accumulator straw in soil on growth and cadmium accumulation of Galinsoga parviflora. Acta Agriculturae Boreali-Sinica (in Chinese) 30:213–218Google Scholar
  50. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. ReprodbToxicol 25:304–315Google Scholar
  51. Thomsen IK, Christensen BT (2004) Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use Manag 20(4):432–438CrossRefGoogle Scholar
  52. Varone L, Ribas-Carbo M, Cardona C, Gallé A, Medrano H, Gratani L, Flexas J (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: different response to water stress. Environ Exp Bot 75:235–247CrossRefGoogle Scholar
  53. Wang S, Huang DY, Zhu QH, Zhu QH, Zhu HH, Liu SL, Luo ZC, Cao XL, Wang JY, Rao ZX, Shen X (2015a) Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw. Environ Sci Pollut Res 22(4):2679–2686CrossRefGoogle Scholar
  54. Wang J, Wang X, Xu M, Feng G, Zhang W, Lu C (2015b) Crop yield and soil organic matter after long-term straw return to soil in China. Nutr Cycl Agroecosyst 102:371–381CrossRefGoogle Scholar
  55. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107CrossRefGoogle Scholar
  56. Wei S, Zhou Q, Saha UK, Xiao H, Hu Y, Ren L, Ping G (2009) Identification of a Cd accumulator Conyza canadensis. J Hazard Mater 163:32–35CrossRefGoogle Scholar
  57. Yang Y, Zhang FS, Li HF, Jiang RF (2009) Accumulation of cadmium in the edible parts of sic vegetable species grown in Cd-contaminated soils. J Agric 90:1117–1122Google Scholar
  58. Yang JX, Guo HT, Ma YB, Wang LQ, Wei DP, Hua L (2010) Genotypic variations in the accumulation of exhibited by different vegetables. J Environ Sci (China) 22:1246–1252CrossRefGoogle Scholar
  59. Yang BJ, Qian HY, Huang GQ, Fan ZW, Fang Y (2012) Research progress and rice-straw returning. Journal of Agriculture(in Chinese) 2:1–4CrossRefGoogle Scholar
  60. Zhang XZ (1986) Determination of chlorophyll content in plants - extraction method with mixing solution of alcohol and acetone. Liaoning Agric Sci (in Chinese) 3:28–30Google Scholar
  61. Zhang XF, Xia HP, Li ZA, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419CrossRefGoogle Scholar
  62. Zhang SR, Lin HC, Deng LJ, Gong GS, Jia YX, Xu XX, Li T, Li Y, Chen H (2013a) Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol Eng 51:133–139CrossRefGoogle Scholar
  63. Zhang K, Yuan J, Kong W, Yang Z (2013b) Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety. Environ Sci Process Impacts 15:1245–1255CrossRefGoogle Scholar
  64. Zhou H, Zhou X, Liao BH, Liu L, Yang WT, Wu YM, Qiu QY, Wang YJ (2014) Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol Environ Saf 101:226–232CrossRefGoogle Scholar
  65. Zhu H, Wu J, Huang D, Zhu Q, Liu S, Su Y, Wei W, Syers K, Li Y (2010) Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil 331:427–437CrossRefGoogle Scholar
  66. Zorrig W, El Khouni A, Ghnaya T, Davidian JC, Abdelly C, Berthomieu P (2013) Lettuce (Lactuca sativa L.): a species with a high capacity for cadmium (Cd) accumulation and growth stimulation in the presence of low Cd concentrations. J Hortic Sci Biotechnol 88:783–789CrossRefGoogle Scholar
  67. Zouari M, Ahmed CB, Zorrig W, Elloumi N, Rabhi M, Delmail D, Rouina BB, Labrousse P, Abdallah FB (2016) Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol Environ Saf 128:1119–1125Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi Tang
    • 1
  • Yongdong Xie
    • 2
  • Guochao Sun
    • 2
  • Huaqiang Tan
    • 2
  • Lijin Lin
    • 1
  • Huanxiu Li
    • 1
  • Ming’an Liao
    • 2
  • Zhihui Wang
    • 2
  • Xiulan Lv
    • 1
  • Dong Liang
    • 1
  • Hui Xia
    • 1
  • Xun Wang
    • 1
  • Jin Wang
    • 1
  • Bo Xiong
    • 2
  • Yangxia Zheng
    • 2
  • Zhongqun He
    • 2
  • Lihua Tu
    • 3
  1. 1.Institute of Pomology and OlericultureSichuan Agricultural UniversityChengduPeople’s Republic of China
  2. 2.College of HorticultureSichuan Agricultural UniversityChengduPeople’s Republic of China
  3. 3.College of ForestrySichuan Agricultural UniversityChengduPeople’s Republic of China

Personalised recommendations