Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4521–4536 | Cite as

Enhanced biodiesel industry wastewater treatment via a hybrid MBBR combined with advanced oxidation processes: analysis of active microbiota and toxicity removal

  • Luciano de Oliveira Gonçalves
  • Maria Clara V. M. Starling
  • Cintia Dutra Leal
  • Daniel V. M. Oliveira
  • Juliana Calábria Araújo
  • Mônica Maria D. Leão
  • Camila C. AmorimEmail author
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • 104 Downloads

Abstract

In the present study, a multistage route is proposed for the treatment of biodiesel industry wastewater (BWW) containing around 1000 mg L−1 of total organic carbon (TOC), 3500 mg L−1 of chemical oxygen demand (COD), and 1325 mg L−1 of oil and grease. Initially, BWW aerobic biodegradability was assessed via Zhan-Wellens biodegradability test to confirm the appropriate treatment route. Then, a hybrid moving bed bioreactor (MBBR) system was chosen as the first treatment stage. The hybrid MBBR achieved 69 and 68% removal of COD and TOC removals, respectively, and provided great conditions for biomass growth. The bacterial community present in the hybrid MBBR was investigated by PCR-DGGE and potential biodegraders were identified such as: members of Desulfuromonadales, Nocardioidaceae and Pseudomonadaceae. Since biodegradation in the hybrid MBBR alone was unable to meet quality requirements, advanced oxidation processes, such as Fenton and photo-Fenton, were optimized for application as additional treatment stages. Physicochemical properties and acute toxicity of BWW were analyzed after the multistage routes: hybrid MBBR + Fenton, hybrid MBBR + photo-Fenton and hybrid MBBR + UV-C254nm/H2O2. Hybrid MBBR + Fenton or photo-Fenton showed overall COD removal efficiencies greater than 95% and removed acute toxicity, thus being appropriate integrated routes for the treatment of real BWW.

Graphical abstract

Keywords

Biodiesel wastewater AOP Toxicity Fenton Biological treatment Microbial community 

Abbreviations

AOP

Advanced oxidation processes

AS

Activated sludge

BWW

Biodiesel wastewater

COD

Chemical oxygen demand

MBBR

Moving bed bioreactors

O&G

Oil and grease

TOC

Total organic carbon

TSS

Total suspended solids

VSS

Volatile suspended solids

Notes

Acknowledgements

The authors would like to thank FAPEMIG, CAPES, and CNPQ for the financial support and the biodiesel industry for the trustworthy collaboration.

Supplementary material

11356_2018_2710_MOESM1_ESM.docx (320 kb)
ESM 1 (DOCX 319 kb)

References

  1. Aiyuk S, Forrez I, Lieven DK, van Haandel A, Verstraete W (2006) Anaerobic and complementary treatment of domestic sewage in regions with hot climates—a review. Bioresour Technol 97:2225–2241CrossRefGoogle Scholar
  2. Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66CrossRefGoogle Scholar
  3. Andreottola G, Foladori P, Ragazzi M, Tatàno F (2000) Experimental comparison between MBBR and activated sludge system for the treatment of municipal wastewater. Water Sci Technol 41:375–382CrossRefGoogle Scholar
  4. Andreottola G, Foladori P, Ragazzi M, Villa R (2002) Dairy wastewater treatment in a moving bed biofilm reactor. Water Sci Technol 45:321–328CrossRefGoogle Scholar
  5. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater. APHA, WashingtonGoogle Scholar
  6. Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204CrossRefGoogle Scholar
  7. Bücker F, Barbosa CS, Quadros PD, Bueno MK, Fiori P, Huang CT, Frazzon APG, Ferrão MF, de Oliveira Camargo FA, Bento FM (2014) Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. Int Biodeterior Biodegrad 95:346–355CrossRefGoogle Scholar
  8. Casas ME, Chhetri RK, Ooi G, Hansen KMS, Litty K, Christensson M, Kragelund C, Andersen HR, Bester K (2015) Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors (MBBR). Water Res 83:293–302CrossRefGoogle Scholar
  9. Chavalparit O, Ongwandee M (2009) Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology. J Environ Sci 21:1491–1496CrossRefGoogle Scholar
  10. Comett-Ambriz I, Gonzalez-Martinez S, Wilderer P (2003) Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent. Water Sci Technol 47:155–161CrossRefGoogle Scholar
  11. da Costa EP, Bottrel SEC, Starling MCVM, Leão MMD, Amorim CC (2018) Degradation of carbendazim in water via photo-Fenton in raceway pond reactor: assessment of acute toxicity and transformation products. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-2130-z
  12. Daud NM, Sheikh Abdullah SR, Abu Hasan H, Yaakob Z (2015) Production of biodiesel and its wastewater treatment technologies: a review. Process Saf Environ Prot 94:487–508CrossRefGoogle Scholar
  13. Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170CrossRefGoogle Scholar
  14. Di Trapani D, Mannina G, Torregrossa M, Viviani G (2010) Comparison between hybrid moving bed biofilm reactor and activated sludge system: a pilot plant experiment. Water Sci Technol 61:891–902CrossRefGoogle Scholar
  15. dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385CrossRefGoogle Scholar
  16. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346Google Scholar
  17. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416CrossRefGoogle Scholar
  18. Gonçalves BR, Machado AEH, Trovó AG (2017) Treatment of a biodiesel effluent by coupling coagulation-flocculation, membrane filtration and Fenton reactions. J Clean Prod 142:1918–1921CrossRefGoogle Scholar
  19. Goodfellow M (2015) Actinobacteria. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B and Dedysh S (eds). In Bergey's Manual of Systematics of Archaea and Bacteria.  https://doi.org/10.1002/9781118960608.cbm00004
  20. Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72:2637–2643CrossRefGoogle Scholar
  21. Hosseini Koupaie E, Alavi Moghaddam MR, Hashemi SH (2011) Post-treatment of anaerobically degraded azo dye acid red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines. J Hazard Mater 195:147–154CrossRefGoogle Scholar
  22. Jahren SJ, Rintala JA, Ødegaard H (2002) Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions. Water Res 36:1067–1075CrossRefGoogle Scholar
  23. Kabdasli I, Arslan-Alaton I, Vardar B, Tünay O (2007) Comparison of electrocoagulation, coagulation and the Fenton process for the treatment of reactive dyebath effluent. Water Sci Technol 55:126–134CrossRefGoogle Scholar
  24. Kermani M, Bina B, Movahedian H, Amin MM, Nikaein M (2008) Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am J Environ Sci 4:675–682CrossRefGoogle Scholar
  25. Kolesárová N, Hutnan M, Bodík I, Spalková V (2011) Utilization of biodiesel by-products for biogas production. J Biomed Biotechnol 2011:1–15CrossRefGoogle Scholar
  26. Krichten D, McDowell C (2003) Simultaneous nitrification and denitrification in biofilms of an engineered integrated fixed-film activated sludge (IFAS) system. Brentwood Industries, New YorkGoogle Scholar
  27. Kumjadpai S, Ngamlerdpokin K, Chatanon P, Lertsathitphongs P, Hunsom M (2011) Management of fatty acid methyl ester (fame) wastewater by a combined two stage chemical recovery and coagulation process. Can J Chem Eng 89:369–376CrossRefGoogle Scholar
  28. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690CrossRefGoogle Scholar
  29. Lapertot M, Ebrahimi S, Oller I, Maldonado MI, Gernjak W, Malato S, Pulgarín C (2008) Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicol Environ Saf 69:546–555CrossRefGoogle Scholar
  30. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction, advances in microbial physiology. Academic Press, Cambridge, pp 219–286Google Scholar
  31. Luostarinen S, Luste S, Valentín L, Rintala J (2006) Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Res 40:1607–1615CrossRefGoogle Scholar
  32. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  33. Mascolo G, Balest L, Cassano D, Laera G, Lopez A, Pollice A, Salerno C (2010) Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresour Technol 101:2585–2591CrossRefGoogle Scholar
  34. Metcalf A, Eddy I (2003) Wastewater engineering : treatment and reuse. 4threvised by George Tchobanoglous, Franklin L. Burton, H. David Stensel. Boston : McGraw-hill, [2003] ©2003Google Scholar
  35. MG (2008) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. . In: COPAM (Hrsg.), COPAM/CERH-MG N.° 1, de 05 de Maio de 2008, Belo HorizonteGoogle Scholar
  36. Mohana VS, Gowda B, Pramila CK, Prasanna KT (2011) Biodiesel Spentwash: characterization, amelioration and its effect on seed germination, seedling growth and biochemical parameters of French bean (Phaseolus vulgaris L.). International journal of Envrionmental sciences 2, 1039–1047Google Scholar
  37. NCBI (2018) National Center for Biotechnology Information. In: Medicine USNLo (Hrsg.), BethesdaGoogle Scholar
  38. Ngamlerdpokin K, Kumjadpai S, Chatanon P, Tungmanee U, Chuenchuanchom S, Jaruwat P, Lertsathitphongs P, Hunsom M (2011) Remediation of biodiesel wastewater by chemical- and electro-coagulation: a comparative study. J Environ Manag 92:2454–2460CrossRefGoogle Scholar
  39. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66:86–91CrossRefGoogle Scholar
  40. OECD (1992) Test No. 302B: Inherent Biodegradability: Zahn-Wellens/ EVPA Test. OECD PublishingGoogle Scholar
  41. OECD (2012) BIOFUEL - OECD-FAO Agricultural Outlook 2012–2021Google Scholar
  42. Oliveira DV, Rabelo MD, Nariyoshi YN (2014) Evaluation of a MBBR (moving bed biofilm reactor) pilot Plant for Treatment of pulp and paper mill wastewater. IJEMA 2:220–225CrossRefGoogle Scholar
  43. Palomino Romero JA, Cardoso Junior FSS, Figueiredo RT, Silva DP, Cavalcanti EB (2013) Treatment of biodiesel wastewater by combined Electroflotation and Electrooxidation processes. Sep Sci Technol 48:2073–2079CrossRefGoogle Scholar
  44. Pitakpoolsil W, Hunsom M (2013) Adsorption of pollutants from biodiesel wastewater using chitosan flakes. J Taiwan Inst Chem Eng 44:963–971CrossRefGoogle Scholar
  45. Poole AJ (2004) Treatment of biorefractory organic compounds in wool scour effluent by hydroxyl radical oxidation. Water Res 38:3458–3464CrossRefGoogle Scholar
  46. Punzi M, Nilsson F, Anbalagan A, Svensson B-M, Jonsson K, Mattiasson B, Jonstrup M (2015) Combined anaerobic-ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J Hazard Mater 292:52–60CrossRefGoogle Scholar
  47. Puppán D (2002) Environmental evaluation of biofuels. Period Politech Soc Manag Sci 10(1):95–116Google Scholar
  48. Quintaes BR, Silva CAMC, Hinojosa MAG, Campos JA (2012) Avaliação de comunidades microbianas em lixiviado de aterro de resíduos sólidos urbanos – revisão. Revista de Ciência e Tecnologia 12:7–19Google Scholar
  49. Ramírez XMV, Mejía GMH, López KVP, Vásquez GR, Sepúlveda JMM (2012) Wastewater treatment from biodiesel production via a coupled photo-Fenton–aerobic sequential batch reactor (SBR) system. Water Sci Technol 66:824–830CrossRefGoogle Scholar
  50. Rattanapan C, Sawain A, Suksaroj T, Suksaroj C (2011) Enhanced efficiency of dissolved air flotation for biodiesel wastewater treatment by acidification and coagulation processes. Desalination 280:370–377CrossRefGoogle Scholar
  51. Revilla M, Galán B, Viguri JR (2016) An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis. Water Res 98:84–97CrossRefGoogle Scholar
  52. Ribeiro MCM, Starling MCVM, Leão MMD, de Amorim CC (2017) Textile wastewater reuse after additional treatment by Fenton’s reagent. Environ Sci Pollut Res 24:6165–6175CrossRefGoogle Scholar
  53. Rocha DC, Gomes BM, Gomes DS, Sene L, Zenatti DC (2013) Selection of microorganisms producer of lipase for fat removal from biodiesel purification water. Engenharia Agrícola 33:332–340CrossRefGoogle Scholar
  54. Rusten B, Mattsson E, Broch-Due A, Westrum T (1994) Treatment of pulp and paper industry wastewaters in nolvel moving bed biofilm reactors. Water Sci Technol 30:161–171CrossRefGoogle Scholar
  55. Siegel S, Castellan NJ Jr (1988) In: ) (ed) Nonparametric statistics for the behavioral sciences, 2nd edn. Mcgraw-Hill Book Company, New York, p xxiii, 399-xxiii 399 ppGoogle Scholar
  56. Sperling MV (2007) Activated sludge and aerobic biofil reactors. Publishing I (Hrsg.). IWA Publishing, LondonGoogle Scholar
  57. Sriwiriyarat T, Randall CW (2005) Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Res 39:3873–3884CrossRefGoogle Scholar
  58. Starling MCVM, dos Santos PHR, de Souza FAR, Oliveira SC, Leão MMD, Amorim CC (2017) Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse. Environ Sci Pollut Res 24:12515–12528CrossRefGoogle Scholar
  59. STATISTICA (2010) STATSOFT. In: 10 (Hrsg.), Tulsa, USAGoogle Scholar
  60. Suehara K-i, Kawamoto Y, Fujii E, Kohda J, Nakano Y, Yano T (2005) Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. J Biosci Bioeng 100:437–442CrossRefGoogle Scholar
  61. Sukkasem C, Laehlah S, Hniman A, O'Thong S, Boonsawang P, Rarngnarong A, Nisoa M, Kirdtongmee P (2011) Upflow bio-filter circuit (UBFC): biocatalyst microbial fuel cell (MFC) configuration and application to biodiesel wastewater treatment. Bioresour Technol 102:10363–10370CrossRefGoogle Scholar
  62. Tarr MA (2003) Chemical degradation methods for wastes and Pollutantes. In: Environmental and industrial applications. Marcel Dekker, New YorkGoogle Scholar
  63. Tóth EM, Borsodi AK (2014) The family Nocardioidaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Actinobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 651–694Google Scholar
  64. Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S (2012) Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Res 46:5374–5380CrossRefGoogle Scholar
  65. Vilar VJP, Moreira FC, Ferreira ACC, Sousa MA, Gonçalves C, Alpendurada MF, Boaventura RAR (2012) Biodegradability enhancement of a pesticide-containing bio-treated wastewater using a solar photo-Fenton treatment step followed by a biological oxidation process. Water Res 46:4599–4613CrossRefGoogle Scholar
  66. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  67. Willems A, Gillis M (2015) Acidovorax, Bergey's manual of systematics of archaea and bacteria. John Wiley & sons. In: LtdGoogle Scholar
  68. Zinatizadeh AAL, Ghaytooli E (2015) Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization. J Taiwan Inst Chem Eng 53:98–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luciano de Oliveira Gonçalves
    • 1
  • Maria Clara V. M. Starling
    • 1
  • Cintia Dutra Leal
    • 1
  • Daniel V. M. Oliveira
    • 2
  • Juliana Calábria Araújo
    • 1
  • Mônica Maria D. Leão
    • 1
  • Camila C. Amorim
    • 1
    Email author
  1. 1.Department of Sanitary and Environmental EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Civil Engineering DepartmentUniversity Center-Catholic of Santa CatarinaJoinvilleBrazil

Personalised recommendations