Environmental Science and Pollution Research

, Volume 26, Issue 1, pp 24–33 | Cite as

Ecotoxicological evaluation of electrochemical oxidation for the treatment of sanitary landfill leachates

  • Annabel FernandesEmail author
  • Manuel Ramiro Pastorinho
  • Ana Catarina SousaEmail author
  • Wilson Silva
  • Rodrigo Silva
  • Maria João Nunes
  • Ana Sofia Rodrigues
  • Maria José Pacheco
  • Lurdes Ciríaco
  • Ana Lopes
New Toxic Emerging Contaminants: Beyond the Toxicological effects


In this study, the efficiency of electrochemical oxidation to treat a sanitary landfill leachate was evaluated by the reduction in physico-chemical parameters and in ecotoxicity. The acute toxicity of the sanitary landfill leachates, before and after treatment, was assessed with the model organism Daphnia magna. Electrochemical oxidation treatment was effective in the removal of organic load and ammonium nitrogen and in the reduction of metal ions concentrations. Furthermore, a reduction of 2.5-fold in the acute toxicity towards D. magna after 36 h of treatment was noticed. Nevertheless, the toxicity of the treated leachate is still very high, and further treatments are necessary in order to obtain a non-toxic effluent to this aquatic organism. Toxicity results were also compared with others described in the literature for different leachate treatments and test organisms.


Sanitary landfill leachate Electrochemical oxidation Boron-doped diamond anode Daphnia magna Acute toxicity 



The authors wish to thank Professor Amadeu M.V.M. Soares for providing the initial culture of D. magna.


The authors gratefully acknowledge the financial support from Fundação para a Ciência e a Tecnologia, FCT, to the projects UID/Multi/00195/2013, UID/Multi/00709/2013, SFRH/BPD/103615/2014 (A. Fernandes), SFRH/BD/109901/2015 (A.S. Rodrigues), and SFRH/BD/132436/2017 (M.J. Nunes). Additional financial support was provided by FEDER funds through the POCI-COMPETE 2020-Operational Programme Competitiveness and Internationalisation in Axis I-Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491), and from Santander Totta Universidades, project BID/ICI-UID FC/Santander Totta Universidades–UBI/2016 (R. Silva). A.C.A. Sousa also acknowledges the financial support of CNRS LabEx DRIIHM.


  1. Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. CrossRefGoogle Scholar
  2. Anglada A, Urtiaga A, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735. CrossRefGoogle Scholar
  3. Anglada A, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838. CrossRefGoogle Scholar
  4. Bila DM, Montalvão AF, Silva AC, Dezotti M (2005) Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement. J Hazard Mater B 117:235–242. CrossRefGoogle Scholar
  5. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166-167:603–643. CrossRefGoogle Scholar
  6. Costa CR, Botta CMR, Espindola ELG, Olivi P (2008) Electrochemical treatment of tannery wastewater using DSA® electrodes. J Hazard Mater 153:616–627. CrossRefGoogle Scholar
  7. Costa FM, Daflon SDA, Bila DM, Fonseca FV, Campos JC (2018) Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manag 76:606–613. CrossRefGoogle Scholar
  8. Del Moro G, Prieto-Rodríguez L, De Sanctis M, Di Iaconi C, Malato S, Mascolo G (2016) Landfill leachate treatment: comparison of standalone electrochemical degradation and combined with a novel biofilter. Chem Eng J 288:87–98. CrossRefGoogle Scholar
  9. Eaton A, Clesceri L, Rice E, Greenberg A, Franson MA (2005) Standard methods for examination of water and wastewater, 21st edn. American Public Health Association, Washington DCGoogle Scholar
  10. Eggen T, Moeder M, Arukwe A (2010) Municipal landfill leachates: a significant source for new and emerging pollutants. Sci Total Environ 408:5147–5157. CrossRefGoogle Scholar
  11. Fernandes A, Pacheco MJ, Ciríaco L, Lopes A (2012) Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode. J Hazard Mater 199-200:82–87. CrossRefGoogle Scholar
  12. Fernandes A, Spranger P, Fonseca AD, Pacheco MJ, Ciríaco L, Lopes A (2014) Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl Catal B Environ 144:514–520. CrossRefGoogle Scholar
  13. Fernandes A, Pacheco MJ, Ciríaco L, Lopes A (2015) Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future. Appl Catal B Environ 176:183–200. CrossRefGoogle Scholar
  14. Freire DDC, Sant’Anna GL (1998) A proposed method modification for the determination of COD in Salina waters. Environ Technol 19:1243–1247. CrossRefGoogle Scholar
  15. Ghosh P, Thakur IS, Kaushik A (2017) Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol Environ Saf 141:259–270. CrossRefGoogle Scholar
  16. Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Res 39:4177–4187. CrossRefGoogle Scholar
  17. He R, Tian B-H, Zhang Q-Q, Zhang H-T (2015) Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process. Waste Manag 38:232–239. CrossRefGoogle Scholar
  18. Ma M, Li J, Wang Z (2005) Assessing the detoxication efficiencies of waste water treatment processes using a battery of bioassays/biomarkers. Arch Environ Contam Toxicol 49:480–487. CrossRefGoogle Scholar
  19. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. CrossRefGoogle Scholar
  20. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407. CrossRefGoogle Scholar
  21. Marttinen SK, Kettunen RH, Sormunen KM, Soimasuo RM, Rintala JA (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858. CrossRefGoogle Scholar
  22. OECD/OCDE (2004). OECD guideline for testing of chemicals - Daphnia so., acute immobilisation test. OECDGoogle Scholar
  23. Öman CB, Junestedt C (2008) Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Manag 28:1876–1891. CrossRefGoogle Scholar
  24. Pablos MV, Martini F, Fernández C, Babín MM, Herraez I, Miranda J, Martínez J, Carbonell G, San-Segundo L, García-Hortigüela P, Tarazona JV (2011) Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manag 31:1841–1847. CrossRefGoogle Scholar
  25. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. CrossRefGoogle Scholar
  26. Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate – comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460. CrossRefGoogle Scholar
  27. Pérez G, Saiz J, Ibañez R, Urtiaga A, Ortiz I (2012) Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Res 46:2579–2590. CrossRefGoogle Scholar
  28. Qiu A, Cai Q, Zhao Y, Guo Y, Zhao L (2016) Evaluation of the treatment process of landfill leachate using the toxicity assessment method. Int J Environ Res Public Health 13:1262. CrossRefGoogle Scholar
  29. Rao ANS, Venkatarangaiah VT (2014) Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut Res 21:3197–3217. CrossRefGoogle Scholar
  30. Sabejeje AJ, Oketayo OO, Bello IJ, Sabejeje TA (2014) Elemental analysis of leachates from open-dump-solid wastes in Ondo state, Nigeria: implication on underground water and surface water safety. Am J Res Commun 2:287–296Google Scholar
  31. Silva AC, Dezotti M, Sant’Anna GL Jr (2004) Treatment and detoxification of a sanitary landfill leachate. Chemosphere 55:207–214. CrossRefGoogle Scholar
  32. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367. CrossRefGoogle Scholar
  33. Theepharaksapan S, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2011) Removal of pollutants and reduction of bio-toxicity in a full scale chemical coagulation and reverse osmosis leachate treatment system. Bioresour Technol 102:5381–5388. CrossRefGoogle Scholar
  34. Thomas DJL, Tyrrel SF, Smith R, Farrow S (2009) Bioassays for the evaluation of landfill leachate toxicity. J Toxicol Env Health B 12:83–105. CrossRefGoogle Scholar
  35. Wang G, Lu G, Zhao J, Yin P, Zhao L (2016) Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools. Environ Sci Pollut Res 23:16015–16024. CrossRefGoogle Scholar
  36. Zolfaghari M, Jardak K, Drogui P, Brar SK, Buelna G, Dubé R (2016) Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. J Environ Manag 184:318–326. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FibEnTech/UBI and Department of ChemistryUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Health Sciences Research Centre (CICS)Universidade da Beira InteriorCovilhãPortugal
  3. 3.NuESA-Health and Environment Study Unit, Faculty of Health SciencesUniversidade da Beira InteriorCovilhãPortugal
  4. 4.CNRS LabEx DRIIHM; CNRS-INEE-ECCOREV (Unité FR3098); OHMi Estarreja-OHM Bassin Minier de Provence; Europôle méditerranéen de L’Arbois, Bât du CEREGE-BP 80Aix en ProvenceFrance
  5. 5.CICECO and Department of ChemistryUniversidade de AveiroAveiroPortugal

Personalised recommendations