Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4488–4497 | Cite as

Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions synthetically prepared

  • Jenny CastroEmail author
  • Santiago Paz
  • Natali Mena
  • Julián Urresta
  • Fiderman Machuca-Martinez
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • 105 Downloads

Abstract

Sodium diclofenac (DCF) is a common analgesic and anti-inflammatory drug, which has become an environmental problem due to its growth and accumulation into water bodies. In this work, commercial (with excipients) and analytical (pure) DCF mineralization was studied by means of heterogeneous catalytic ozonation. The process was carried out with magnetite (Fe3O4) as a catalyst, which preserves its physical and chemical properties during the process. The best results of mineralization were obtained after a 40-min treatment of 35 mg/L analytical DCF solution, with a 0.5 g/L catalyst concentration. These results showed the highest organic load decrease, measured as dissolved organic carbon (DOC) and chemical oxygen demand (COD), with 94 and 89%, respectively. In addition, the percentage of organic load decrease was compared between the conventional and the catalyzed process. Besides, reaction products were identified by gas chromatography–mass spectrometry (GC-MS) and the catalytic properties were identified by Mössbauer spectroscopy, which showed the catalyst maintained its nature after the process. Finally, the results obtained show that the heterogeneous catalytic process could be an efficient degradation treatment for emerging contaminants such as DCF.

Keywords

Ozonation Diclofenac Magnetite Heterogeneous catalysis Wastewater Catalytic activity Emerging pollutants 

Notes

Acknowledgements

The authors thank the investigation group of Procesos Avanzados para Tratamientos Químicos y Biológicos (GAOX).

Funding information

This study received financial and scientific support from Laboratorio de Investigación en Catálisis Aplicada y Procesos (LICAP) from Universidad del Valle, Cali, Colombia.

Supplementary material

11356_2018_2582_MOESM1_ESM.docx (488 kb)
ESM 1 (DOCX 487 kb)

References

  1. Alimoradzadeh R, Assadi A, Nasseri S, Mehrasbi MR (2012) Photocatalytic degradation of 4-chlorophenol by UV/H2O2/NiO process in aqueous solution. Iran J Environ Health Sci Eng 9(1):1–8.  https://doi.org/10.1186/1735-2746-9-12 Google Scholar
  2. Arunan E (1997) The C-C bond is stronger than the C-Cl bond in CH3COCl. J Phys Chem A 101(27):4838–4839.  https://doi.org/10.1021/jp970576j Google Scholar
  3. Baena Y (2011) Estudio fisicoquímico de la liberación del diclofenac a partir de complejos polielectrolito-fármaco (Doctoral Thesis). Universidad Nacional de Colombia, ColombiaGoogle Scholar
  4. CEVIME (2016) Farmacontaminación. Impacto ambiental de los medicamentos. 24(10). Recovered from http://files.sld.cu/medicamentos/files/2017/01/INFAC_Vol_24_n_10_farmacontaminacion.pdf [Accesed: 27 Aug 2017]
  5. Coelho A, Sans C, Agüera A, Gómez M, Esplugas S, Dezotti M (2009) Effects of ozone pre-treatment on diclofenac: intermediates, biodegradability and toxicity assessment. Sci Total Environ 407:3572–3578Google Scholar
  6. Cooper DL, Harirforoosh S (2014) Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One 9(1):1–10.  https://doi.org/10.1371/journal.pone.0087326 Google Scholar
  7. Darwent B (1970) Bond dissociation energies in simple molecules. Recovered from http://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds31.pdf
  8. Eaton A, Clesceri L, Greenberg A, Franson M (2012) Standard methods for the examination of water and wastewater, 22th edn. American Public Health Association, Washington, DCGoogle Scholar
  9. Feito R, Valcárcel Y, Catalá M (2012) Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21(1):289–296.  https://doi.org/10.1007/s10646-011-0790-2 Google Scholar
  10. Gmurek M, Olak-Kucharczyk M, Ledakowicz S (2017) Photochemical decomposition of endocrine disrupting compounds—a review. Chem Eng J 310:437–456.  https://doi.org/10.1016/j.cej.2016.05.014 Google Scholar
  11. Gomes J, Costa R, Quinta-Ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283.  https://doi.org/10.1016/j.scitotenv.2017.01.216 Google Scholar
  12. Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467.  https://doi.org/10.1016/S0043-1354(02)00457-8 Google Scholar
  13. Hartmann J, Bartels P, Mau U, Witter M, Tümpling W, Hofmann J, Nietzschmann E (2008) Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere 70(3):453–461.  https://doi.org/10.1016/j.chemosphere.2007.06.063 Google Scholar
  14. Hikmat K, Miessner H, Mueller S, Kalass D, Moeller D, Khorshid I, Rashid M (2017) Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem Eng J 313:1033–1041.  https://doi.org/10.1016/j.cej.2016.10.137 Google Scholar
  15. Huang D, Feng C (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10.  https://doi.org/10.1016/j.scitotenv.2012.02.023 Google Scholar
  16. IDEAM (2014-2015) Informe Nacional Generación y Manejo de Residuos o Desechos Peligrosos en Colombia. Recovered from http://www.ideam.gov.co/documents/51310/1929967/Informe+Nacional+de+generacion+y+manejo+de+residuos+y+desechos+peligrosos.pdf/158efdc8-e8dc-4775-b377-6f2239b36d21?version=1.0. [Accesed: 23 Aug 2017]
  17. Ivashchenko O, Jurga-Stopa J, Coy E, Peplinska B, Pietralik Z, Jurga S (2016) Fourier transform infrared and Raman spectroscopy studies on magnetite/ag/antibiotic nanocomposites. Appl Surf Sci 364:400–409.  https://doi.org/10.1016/j.apsusc.2015.12.149 Google Scholar
  18. Jiménez C (2011) Contaminantes orgánicos emergentes en el ambiente: Productos farmacéuticos. Rev Lasallista Investig 8(2):143–153Google Scholar
  19. Khamparia S, Jaspal DK (2017) Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front Environ Sci Eng 11(1):1–18.  https://doi.org/10.1007/s11783-017-0899-5 Google Scholar
  20. Manrique J (2018) Producción electrolítica de ferritas y su utilización en el tratamiento de aguas residuales. (Doctoral Thesis). Universidad del Valle, ColombiaGoogle Scholar
  21. Martínez R, Ramón D, Yus M (2009) Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Org Biomol Chem 7(10):2176–2181.  https://doi.org/10.1039/b901929d Google Scholar
  22. Mena N (2014) Tratamiento de lixiviadosmediante ozonización catalítica heterogénea (Master's Thesis). Universidad del Valle, ColombiaGoogle Scholar
  23. Mena N, Manrique J and Machuca F (2014) Proceso de remoción de contaminantes en lixviados y aguas residuales industriales mediante ozonización catalítica heterogénea Patent No CO7120274Google Scholar
  24. Moussavi G, Khosravi R, Omran NR (2012) Development of an efficient catalyst from magnetite ore: characterization and catalytic potential in the ozonation of water toxic contaminants. Appl Catal A Gen 445–446:42–49.  https://doi.org/10.1016/j.apcata.2012.08.002 Google Scholar
  25. Muñoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Appl Catal B Environ 176–177:249–265.  https://doi.org/10.1016/j.apcatb.2015.04.003 Google Scholar
  26. Nawrocki J (2013) Catalytic ozonation in water: controversies and questions. Discussion paper. Appl Catal B Environ 142–143:465–471.  https://doi.org/10.1016/j.apcatb.2013.05.061 Google Scholar
  27. NIST Standard Reference Data (2017) Secretary of Commerce on behalf of the United States of America. All rights reserved, 2015. Original licence Universidad del Valle, Cali- ColombiaGoogle Scholar
  28. Parks G, Akthar S (1968) Magnetic moment of Fe2 + in paramagnetic minerals. Am Mineral 53:406–415Google Scholar
  29. Pérez G, Bohórquez A (1993) Espectroscopia Mössbauer. Universidad del Valle, CaliGoogle Scholar
  30. Perianes-Rodriguez A, Waltman L, Van Eck NJ (2016) Constructing bibliometric networks: A comparison between full and fractional counting. J Informet 10(4):1178–1195Google Scholar
  31. Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35.  https://doi.org/10.1016/j.jclepro.2013.09.013
  32. Rao N, Dubey A, Mohanty S, Khare P, Jain R, Kaul S (2003) Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability. J Hazard Mater 101(3):301–314.  https://doi.org/10.1016/S0304-3894(03)00180-8 Google Scholar
  33. Taseidifar M, Khataee A, Vahid B, Khorram S, Joo SW (2015) Production of nanocatalyst from natural magnetite by glow discharge plasma for enhanced catalytic ozonation of an oxazine dye in aqueous solution. J Mol Catal A Chem 404–405:218–226.  https://doi.org/10.1016/j.molcata.2015.05.004 Google Scholar
  34. Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98.  https://doi.org/10.1016/j.cej.2016.11.118 Google Scholar
  35. Wang J, Lou Y, Zhuang X, Song S, Liu W, Xu C (2018) Magnetic Pr6O11/SiO2@Fe3O4particles as the heterogeneous catalyst for the catalytic ozonation of acetochlor: performance and aquatic toxicity. Sep Purif Technol 197(2017):63–69.  https://doi.org/10.1016/j.seppur.2017.12.052 Google Scholar
  36. Yang R, Wang M, Shen Z, Wang W, Ma H, Gu J (2007) The degradation and mineralization of 4-chlorophenol in aqueous solutions by electron beam irradiation in the presence of TiO2 nanoparticles. Radiat Phys Chem 76(7):1122–1125.  https://doi.org/10.1016/j.radphyschem.2006.10.008 Google Scholar
  37. Yilmaz B, Ciltas U (2015) Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. J Pharm Anal 5(3):153–160.  https://doi.org/10.1016/j.jpha.2014.10.005 Google Scholar
  38. Zhao J, Yu G, Cai M, Lei X, Yang Y, Wang Q, Zhai X (2018) Bibliometric analysis of global scientific activity on umbilical cord mesenchymal stem cells: A swiftly expanding and shifting focus. Stem Cell Res Ther 9:32Google Scholar
  39. Zhihui A, Peng Y, Xiaohua L (2005) Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60(6):824–827.  https://doi.org/10.1016/j.chemosphere.2005.04.027 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jenny Castro
    • 1
    Email author
  • Santiago Paz
    • 1
  • Natali Mena
    • 2
  • Julián Urresta
    • 2
  • Fiderman Machuca-Martinez
    • 1
  1. 1.Grupo de Investigación de Procesos Avanzados para Tratamientos Químicos y Biológicos (GAOX)Universidad del ValleCaliColombia
  2. 2.Laboratorio de Investigación en Catálisis aplicada y Procesos (LICAP)Universidad del ValleCaliColombia

Personalised recommendations