Advertisement

Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune

  • Julia Kirtzel
  • Eric Leon Scherwietes
  • Dirk Merten
  • Katrin Krause
  • Erika Kothe
New Toxic Emerging Contaminants: Beyond the Toxicological effects
  • 146 Downloads

Abstract

Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.

Keywords

Schizophyllum commune Multicopper oxidases Metal release Stress resistance Black slate Bioweathering 

Notes

Acknowledgements

This project was supported by the Deutsche Forschungsgesellschaft through GRK 1257 and JSMC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_2568_MOESM1_ESM.pdf (88 kb)
ESM 1 (PDF 87 kb)

References

  1. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:87–91CrossRefGoogle Scholar
  2. Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74CrossRefGoogle Scholar
  3. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521CrossRefGoogle Scholar
  4. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181CrossRefGoogle Scholar
  5. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155CrossRefGoogle Scholar
  6. Cañero DC, Roncero M (2008) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98:509–518CrossRefGoogle Scholar
  7. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96CrossRefGoogle Scholar
  8. Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microbiol 67:2088–2094CrossRefGoogle Scholar
  9. De la Torre M, Gomez-Alarcon G (1994) Manganese and iron oxidation by fungi isolated from building stone. Microb Ecol 27:177–188CrossRefGoogle Scholar
  10. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539Google Scholar
  11. Ezaki B, Nakakihara E (2012) Possible involvement of GDI1 protein, a GDP dissociation inhibitor related to vesicle transport, in an amelioration of zinc toxicity in Saccharomyces cerevisiae. Yeast 29:17–24CrossRefGoogle Scholar
  12. Gabriel J, Mokrejš M, Bílý J, Rychlovský P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118CrossRefGoogle Scholar
  13. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefGoogle Scholar
  14. Gadd GM (2016) Geomycology. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Springer, Berlin, pp 371–401CrossRefGoogle Scholar
  15. Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55CrossRefGoogle Scholar
  16. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385CrossRefGoogle Scholar
  17. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast 11:355–360CrossRefGoogle Scholar
  18. Gochev VK, Krastanov AI (2007) Fungal Laccases. Bulg J Agric Sci 13:75–83Google Scholar
  19. Gola S, Kothe E (2003) An expression system for the functional analysis of pheromone genes in the tetrapolar basidiomycete Schizophyllum commune. J Basic Microbiol 43:104–112CrossRefGoogle Scholar
  20. Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805CrossRefGoogle Scholar
  21. Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541CrossRefGoogle Scholar
  22. Grawunder A, Merten D, Büchel G (2014) Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environ Sci Pollut Res 21:6812–6823CrossRefGoogle Scholar
  23. Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B (2009) Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals 22:401–410CrossRefGoogle Scholar
  24. Grishkan I (2011) Ecological stress: melanization as a response in fungi to radiation. In: Horikoshi K (ed) Extremophiles handbook. Springer, Berlin, pp 1135–1145CrossRefGoogle Scholar
  25. Gube M (2016) Fungal molecular response to heavy metal stress. In: Hoffmeister D (ed) Biochemistry and molecular biology. Springer, Berlin, pp 47–68CrossRefGoogle Scholar
  26. Hatvani N, Mécs I (2003) Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicol Environ Saf 55:199–203CrossRefGoogle Scholar
  27. Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol 34:63–87CrossRefGoogle Scholar
  28. Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Siver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 73–115CrossRefGoogle Scholar
  29. Höfer C, Schlosser D (1999) Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 451:186–190CrossRefGoogle Scholar
  30. Jacob C, Courbot M, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576:423–427CrossRefGoogle Scholar
  31. Jarosz-Wilkolazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547CrossRefGoogle Scholar
  32. Jaszek M, Grzywnowicz K, Malarczyk E, Leonowicz A (2006) Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pesticide Biochem Physiol 85:147–154CrossRefGoogle Scholar
  33. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87CrossRefGoogle Scholar
  34. Kirtzel J, Siegel D, Krause K, Kothe E (2017) Stone-eating fungi: mechanisms in bioweathering and the potential role of laccases in black slate degradation with the basidiomycete Schizophyllum commune. Adv Appl Microbiol 99:83–101CrossRefGoogle Scholar
  35. Kües U, Rühl M (2011) Multiple multi-copper oxidase gene families in basidiomycetes—what for? Curr Genom 12:72–94CrossRefGoogle Scholar
  36. Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. The Ghetty Conservation Institute, Los AngelesGoogle Scholar
  37. Kunamneni A (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, pp 233–244Google Scholar
  38. Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth Sci Rev 41:67–108CrossRefGoogle Scholar
  39. Lorenzo M, Moldes D, Sanromán MÁ (2006) Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63:912–917CrossRefGoogle Scholar
  40. Madhavan S, Krause K, Jung E-M, Kothe E (2014) Differential regulation of multi-copper oxidases in Schizophyllum commune during sexual development. Mycol Prog 13:1199–1206CrossRefGoogle Scholar
  41. Martínez A, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204Google Scholar
  42. Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332CrossRefGoogle Scholar
  43. Missall TA, Moran JM, Corbett JA, Lodge JK (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4:202–208CrossRefGoogle Scholar
  44. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904CrossRefGoogle Scholar
  45. Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Transformation of the basidiomycete Schizophyllum commune. Mol Gen Genet 205:103–106CrossRefGoogle Scholar
  46. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, vanKuyk PA, Horton JS, Grigoriev IV, Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963CrossRefGoogle Scholar
  47. Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366CrossRefGoogle Scholar
  48. Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Berlin, pp 31–58CrossRefGoogle Scholar
  49. Rangel DEN, Alder-Rangel A, Dadachova E, Finlay RD, Kupiec M, Dijksterhuis J, Braga GUL, Corrochano LM, Hallsworth JE (2015) Fungal stress biology: a preface to the fungal stress responses special edition. Curr Genet 61:231–238CrossRefGoogle Scholar
  50. Raper JR, Hoffman RM (1974) Schizophyllum commune. In: Bacteria, bacteriophages, and Fungi. Springer, Berlin, pp 597–626CrossRefGoogle Scholar
  51. Renshaw JC, Robson GD, Trinci AP, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  52. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics : a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  53. Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14CrossRefGoogle Scholar
  54. Tang Y, Zeiner CA, Santelli CM, Hansel CM (2013) Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ Microbiol 15:1063–1077CrossRefGoogle Scholar
  55. Tekere M, Mswaka AY, Zvauya R, Read JS (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 28:420–426Google Scholar
  56. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRefGoogle Scholar
  57. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12CrossRefGoogle Scholar
  58. Vesentini D, Dickinson DJ, Murphy RJ (2007) The protective role of the extracellular mucilaginous material (ECMM) from two wood-rotting basidiomycetes against copper toxicity. Int Biodeterior Biodegrad 60:1–7CrossRefGoogle Scholar
  59. Wendland J, Kothe E (1997) Isolation of tef1 encoding translation elongation factor EF1α from the homobasidiomycete Schizophyllum commune. Mycol Res 101:798–802CrossRefGoogle Scholar
  60. Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G (2006) Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367:383–393CrossRefGoogle Scholar
  61. Willmann G, Fakoussa R (1997) Extracellular oxidative enzymes of coal-attacking fungi. Fuel Process Technol 52:27–41CrossRefGoogle Scholar
  62. Yang Y, Fan F, Zhuo R, Ma F, Gong Y, Wan X, Jiang M, Zhang X (2012) Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78:5845–5854CrossRefGoogle Scholar
  63. Zeien H, Brümmer G (1989) Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt Dtsch Bodenkdl Ges 59:505–510Google Scholar
  64. Zhang Z, Zhang Z, Chen H, Liu J, Liu C, Ni H, Zhao C, Ali M, Liu F, Li L (2015) Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals. Sci Rep 5:1–13Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microbiology, Microbial CommunicationFriedrich Schiller UniversityJenaGermany
  2. 2.Institute of Geosciences, Applied GeologyFriedrich Schiller UniversityJenaGermany

Personalised recommendations