Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 19, pp 18961–18970 | Cite as

Comparative study of Gram-negative bacteria response to solar photocatalytic inactivation

  • Faouzi AchouriEmail author
  • Myriam BenSaid
  • Latifa Bousselmi
  • Serge Corbel
  • Raphaël Schneider
  • Ahmed Ghrabi
Advanced Oxidation Process for Sustainable Water Management

Abstract

Solar photocatalytic inactivation of Gram-negative bacteria with immobilized TiO2-P25 in a fixed-bed reactor was modeled with simplified kinetic equations. The kinetic parameters are the following: the photocatalytic inactivation coefficient (kd,QUV), the initial bacterial reduction rate (A) in the contact with the disinfecting agent, and the threshold level of damage (n) were determined to report the effect of QUV/TiO2-P25 on bacterial cultivability and viability and to compare the response of bacterial strains to photocatalytic treatment. In addition, the integration of the reactivation coefficient (Cr) in the photocatalytic inactivation equation allowed evaluating the ability of bacterial reactivation after photocatalytic stress. Results showed different responses of the bacteria strains to photocatalytic stress and the ability of certain bacterial strains such as Escherichia coli ATCC25922 and Pseudomonas aeruginosa ATCC4114 to resuscitate after photocatalytic treatment.

Keywords

Photocatalysis TiO2-P25 Solar irradiation Inactivation kinetic Reactivation 

Notes

Funding information

This work is partially supported by the Tunisian- French project PHC Utique CMCU 14G0821.

References

  1. Acevedo A, Carpio EA, Rodríguez J, Manzano MA (2011) Disinfection of natural water by solar photocatalysis using immobilized TiO2 devices: efficiency in eliminating indicator bacteria and operating life of the system. J Sol Energy Eng 134:011008.  https://doi.org/10.1115/1.4005338 CrossRefGoogle Scholar
  2. Ben Said M, Masahiro O (2013) Enhancement of ultraviolet water disinfection process. Afr J Biotechnol 20:2932–2938.  https://doi.org/10.5897/AJB12.1479 Google Scholar
  3. Ben Said M, Otaki M (2012) Development of a DNA-dosimeter system for monitoring the effects of pulsed ultraviolet radiation. Ann Microbiol 62:1339–1344.  https://doi.org/10.1007/s13213-012-0562-0 CrossRefGoogle Scholar
  4. Ben Said M, Masahiro O, Hassen A (2010) Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Ann Microbiol 60:121–127.  https://doi.org/10.1007/s13213-010-0017-4 CrossRefGoogle Scholar
  5. Bonetta S, Bonetta S, Motta F, Strini A, Carraro E (2013) Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3(1):59.  https://doi.org/10.1186/2191-0855-3-59 CrossRefGoogle Scholar
  6. Bousselmi L, Ghrabi A, Ghozzi K, Zayani G, Ennabli M (2002) Solar photocatalytic treatment of textile wastewater: possibilities and limitations in the Tunisian context. Proceedings of International Symposium on Environmental Pollution Control and Waste Management (EPCOWM’2002) 804–812Google Scholar
  7. Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A-Chem 202:92–98.  https://doi.org/10.1016/j.jphotochem.2008.11.005 CrossRefGoogle Scholar
  8. Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275.  https://doi.org/10.1128/AEM.71.1.270-275.2005 CrossRefGoogle Scholar
  9. Chong MN, Lei S, Jin B, Saint C, Chow CWK (2009) Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titania impregnated kaolinite nano-photocatalyst. Sep Purif Technol 67:355–363.  https://doi.org/10.1016/j.seppur.2009.04.001 CrossRefGoogle Scholar
  10. Chonga MN, Jinb B, Saint CP (2011) Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chem Eng J 171:16–23.  https://doi.org/10.1016/j.cej.2011.03.024 CrossRefGoogle Scholar
  11. Dheaya MAA, Patrick SMD, McMurray TA, Byrne JA (2009) Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 43:47–54.  https://doi.org/10.1016/j.watres.2008.10.015 CrossRefGoogle Scholar
  12. Errol CF , Graham CW, Wolfram S, Richard DW, Roger AS , Tom E (2006) DNA repair and mutagenesis. ASM Pres 687–698.  https://doi.org/10.1128/9781555816704
  13. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol. C: Photochem Rev 1:1–21.  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  14. Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol Lett 258:18–24.  https://doi.org/10.1111/j.1574-6968.2006.00190.x CrossRefGoogle Scholar
  15. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. J Appl Phys 44:8269–8285.  https://doi.org/10.1143/JJAP.44.8269 CrossRefGoogle Scholar
  16. Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photoch Photobio A 130:163–170.  https://doi.org/10.1016/S1010-6030(99)00205-1 CrossRefGoogle Scholar
  17. Ismail M (2011) Preparation et caracterisation de nouveaux materiaux pourles reactions de depollution photocatalytique de l’eau dans le visible. Thèse à l’Institut National Polytechnique de Lorraine, ENSIC Nancy FranceGoogle Scholar
  18. Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21:4631–4641.  https://doi.org/10.1021/la046983l CrossRefGoogle Scholar
  19. Lifen L, Barford J, King Lun Y (2009) Non-UV germicidal activity of fresh TiO2 and Ag/TiO2. J Environ Sci 21:700–706.  https://doi.org/10.1016/S1001-0742(08)62327-X CrossRefGoogle Scholar
  20. Lindauer KG, Darby J (1994) Ultraviolet disinfection of waste water: effect of dose on subsequent photoreactivation. Water Res 28:805–817.  https://doi.org/10.1016/0043-1354(94)90087-6 CrossRefGoogle Scholar
  21. MacFarlane JW, Jenkinson HF, Scott TB (2011) Sterilization of microorganisms on jet spray formed titanium dioxide surfaces. Appl Catal B Environ 106:181–185.  https://doi.org/10.1016/j.apcatb.2011.05.023 Google Scholar
  22. Malato S, Blanco J, Richter C, Fernández P, Maldonado MI (2000) Solar photocatalytic mineralization of commercial pesticides: oxamyl. Sol Energ Mat Sol C 64:1–14.  https://doi.org/10.1016/S0927-0248(00)00037-4 CrossRefGoogle Scholar
  23. Marugán JO, Grieken RV, Sordo C, Cruz C (2008) Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B: Environ 82:27–36.  https://doi.org/10.1016/j.apcatb.2008.01.002 CrossRefGoogle Scholar
  24. Matsunaga R, Tomodam T, Wake NH (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214.  https://doi.org/10.1111/j.1574-6968.1985.tb00864.x CrossRefGoogle Scholar
  25. Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photoch Photobio A 152:233–247.  https://doi.org/10.1016/S1010-6030(02)00243-5 CrossRefGoogle Scholar
  26. Mills A, Hepburn J, Hazafy D, O'Rourke C, Krysa J, Baudys M, Zlamal M, Bartkova H, Hill CE, Winn KR, Simonsen ME, Søgaard EG, Pillai SC, Leyland NS, Fagan R, Neumann F, Lampe C, Graumann T (2013) A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. J Photoch Photobio A Chem 272:18–20.  https://doi.org/10.1016/j.jphotochem.2013.08.004 CrossRefGoogle Scholar
  27. Nassar R, Mokh S, Rifai A, Chamas F, Hoteit M, AlIskandarani M (2017) Transformation of sulfaquinoxaline by chlorine and UV light in water: kinetics and by-product identification. Environ Sci Pollut Res:1–10.  https://doi.org/10.1007/s11356-017-0814-4
  28. Oguma K, Katayama H, Ohgaki S (2001) Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Appl Environ Microbiol 68:6029–6035.  https://doi.org/10.1128/AEM.68.12.6029-6035.2002 CrossRefGoogle Scholar
  29. Pablos C, VanGrieken R, Marugán J, Moreno B (2011) Photocatalytic inactivation of bacteria in a fixed-bed reactor: mechanistic insights by epifluorescence microscopy. Catal Today 161:133–139CrossRefGoogle Scholar
  30. Pagan R, Manas P, Raso J, Condon S (1999) Bacterial resistance to ultrasonic waves under pressure at nonlethal (manosonication) and lethal (manothermosonication) temperatures. Appl Environ Microbiol 65:297–300Google Scholar
  31. Pigeot-Rémy S, Simonet F, Atlan D, Lazzaroni JC, Guillard C (2012) Bactericidal efficiency and mode of action: a comparative study of photochemistry and photocatalysis. Water Res 46:3208–3218.  https://doi.org/10.1016/j.watres.2012.03.019 CrossRefGoogle Scholar
  32. Piscopo A, Robert D, Weber JV (2001) Influence of pH and chloride anion on the photocatalytic degradation of organic compounds Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Appl Catal B: Environ 35:117–124CrossRefGoogle Scholar
  33. Rahmani AR, Samarghandi MR, Samadi MT, Nazemi F (2009) Photocatalytic disinfection of coliform bacteria using UV/TiO2. J Res Health Sci 9:1–6Google Scholar
  34. Rengifo HJA, Pulgarin C, Machuca F, Sanabria J (2010) TiO2 photocatalytic inactivation under simulated solar light of bacterial consortia in domestic wastewaters previously treated by uasb, duckweed and facultative ponds. Quim Nova 33:1636–1639.  https://doi.org/10.1590/S0100-40422010000800003 CrossRefGoogle Scholar
  35. Rincon AG, Pulgarin C (2004) Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection. Sol Energy 77:635–648.  https://doi.org/10.1016/j.solener.2004.08.002 CrossRefGoogle Scholar
  36. Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photoch Photobio A 175:51–56.  https://doi.org/10.1016/j.jphotochem.2005.04.033 CrossRefGoogle Scholar
  37. Rtimi S (2017) Indoor light enhanced photocatalytic ultra-thin films on flexible non-heat resistant substrates reducing bacterial infection risks. Catalysts 7:57.  https://doi.org/10.3390/catal7020057 CrossRefGoogle Scholar
  38. Rtimi S, Pulgarin C, Sanjines R, Kiwi J (2015) Kinetics and mechanism for transparent polyethylene-TiO2 films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation. Appl Catal B Environ 162:236–244.  https://doi.org/10.1016/j.apcatb.2014.05.039 CrossRefGoogle Scholar
  39. Sapizah R, Shahidan R, Ainon H (2012) Inactivation of Escherichia coli under fluorescent lamp using TiO2 nanoparticles synthesized via sol gel method. Sains Malays 41(2):219–224Google Scholar
  40. Schuch AP, Galhardo RS, Lima-Bessa KM, Schuch NJ, Menck CFM (2009) Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochem Photobiol Sci 8:111–120.  https://doi.org/10.1039/b810085c CrossRefGoogle Scholar
  41. Severin BF, Suidan MT, Engelbrecht RS (1984) Series-event kinetic model for chemical disinfection. J Environ Eng 110:430–439.  https://doi.org/10.1061/(ASCE)0733-9372(1984)110:2(430) CrossRefGoogle Scholar
  42. Silva CR, Miranda SM, Lopes FVS, Silva M, Dezotti M, Silva AM, Faria JL, Boaventura RAR, Vilar VJP, Pinto E (2017) Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase. Environ Sci Pollut Res 24:6372–6381.  https://doi.org/10.1007/s11356-016-7137-8 CrossRefGoogle Scholar
  43. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B: Environ 170-171:90–123.  https://doi.org/10.1016/j.apcatb.2014.12.050 CrossRefGoogle Scholar
  44. Tatsuma T, Kubo W, Fujishima A (2002) Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO2. Langmuir 18:9632–9634.  https://doi.org/10.1021/la026246u CrossRefGoogle Scholar
  45. Vamathevan V, Amal R, Beydoun D, Low G, McEvoy S (2002) Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J Photoch Photobio A Chem 148:227–233.  https://doi.org/10.4236/ojic.2013.31003 CrossRefGoogle Scholar
  46. Wang W, Huang G, Yu JC, Wong PK (2015) Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms.34:232–247.  https://doi.org/10.1016/j.jes.2015.05.003
  47. Watson HE (1908) A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J Hyg 8:536–542Google Scholar
  48. Zsilák Z, Szabó-Bárdos E, Fónagy O, Horváth O, Horváth K, Hajós P (2014) Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation. CatalToday 230:55–60.  https://doi.org/10.1016/j.cattod.2010.10.051 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Faouzi Achouri
    • 1
    • 2
    • 3
    Email author
  • Myriam BenSaid
    • 1
  • Latifa Bousselmi
    • 1
  • Serge Corbel
    • 2
  • Raphaël Schneider
    • 2
  • Ahmed Ghrabi
    • 1
  1. 1.Centre de Recherches et des Technologies des Eaux (CERTE)Laboratoire Eaux Usees et environnementSolimanTunisia
  2. 2.Université de Lorraine, Laboratoire Reactions et Genie des Procedes (LRGP), UMR7274, CNRSNancy CedexFrance
  3. 3.Faculté des Sciences de BizerteUniversité de CarthageBizerteTunisia

Personalised recommendations