Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22977–22997 | Cite as

Use of hydraulic binders for reducing sulphate leaching: application to gypsiferous soil sampled in Ile-de-France region (France)

  • Vincent Trincal
  • Vincent Thiéry
  • Yannick Mamindy-Pajany
  • Stephen Hillier
Research Article
  • 63 Downloads

Abstract

Polluted soils are a serious environmental risk worldwide and consist of millions of tons of mineral waste to be treated. In order to ensure their sustainable management, various remediation options must be considered. Hydraulic binder treatment is one option that may allow a stabilisation of pollution and thus offer a valorisation as secondary raw materials rather than considering them as waste. In this study, we focused on sulphate-polluted soil and tested the effectiveness of several experimental hydraulic binders. The aim was to transform gypsum into ettringite, a much less soluble sulphate, and therefore to restrict the potential for sulphate pollutant release. The environmental assessment of five formulations using hydraulic binders was compared to the gypsiferous soil before treatment (contaminated in sulphate). The approach was to combine leaching tests with mineralogical quantifications using among others thermogravimetric and XRD methods. In the original soil and in the five formulations, leaching tests indicate sulphate release above environmental standards. However, hydraulic binders promote ettringite formation, as well as a gypsum content reduction as observed by SEM. The stabilisation of sulphates is, however, insufficient, probably as a result of the very high content of gypsum in the unusual soil used. The mineralogical reactions highlighted during the hydration of hydraulic binders are promising; they could pave the way for the development of new industrial mixtures that would have a positive environmental impact by allowing reuse of soils that would otherwise be classified as waste.

Keywords

Sulphate leaching Gypsiferous soils Mineralogical quantifications Sulphoaluminate ALPENAT® binder SEM observations 

Notes

Acknowledgments

Authors thank Johanna Caboche, Damien Betrancourt and Dominique Dubois, from the GCE department (Douai), for their contribution to mineralogical and chemical analyses; Phillipe Hauza from Colas Company for initiating this research theme and providing the soil and mixture 1 samples; and Vicat Company for the ALPENAT® and Carrières du Boulonnais Company for the FAC.

Supplementary material

11356_2018_2376_MOESM1_ESM.docx (17 kb)
ESM 1 RIR method. (DOCX 16 kb)
11356_2018_2376_MOESM2_ESM.xlsx (25 kb)
ESM 2 Details of RIR calculations. Peaks intensities for gypsum, quartz and corundum were reported as net area. (XLSX 24 kb)
11356_2018_2376_MOESM3_ESM.xlsx (38 kb)
ESM 3 EDS analyses in weight percent and in atom percent. Ca/S and Ca/Al ratios were calculated for mineral determination using atom percent data. Locations of points are reported in Figs. 6, 7, 8, 9 and 10. (XLSX 38 kb)
11356_2018_2376_MOESM4_ESM.docx (87 kb)
ESM 4 (DOCX 86 kb)

References

  1. Ambroise J, Georgin JF, Peysson S, Péra J (2009) Influence of polyether polyol on the hydration and engineering properties of calcium sulfoaluminate cement. Cem Concr Compos 31:474–482.  https://doi.org/10.1016/j.cemconcomp.2009.04.009 CrossRefGoogle Scholar
  2. Barbarulo R, Peycelon H, Leclercq S (2007) Chemical equilibria between C–S–H and ettringite, at 20 and 85 °C. Cem Concr Res 37:1176–1181.  https://doi.org/10.1016/j.cemconres.2007.04.013 CrossRefGoogle Scholar
  3. Bennett AC, Adams F (1972) Solubility and solubility product of gypsum in soil solutions and other aqueous solutions. Soil Sci Soc Am J 36:288–291.  https://doi.org/10.2136/sssaj1972.03615995003600020025x CrossRefGoogle Scholar
  4. Bhagawati D, Kakoty U, Saikia PP, Baruah MK (2016) Study on the effect of pH, ionic strength and pressure on the solubility of CaSO4-NaCl-H2O system. Int Res J Pure Appl Chem 11:1–10Google Scholar
  5. Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940Google Scholar
  6. Bock E (1961) On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 °C, 30 °C, 40 °C, and 50 °C. Can J Chem 39:1746–1751CrossRefGoogle Scholar
  7. Boháč M, Palou M, Novotný R, Másilko J, Všianský D, Staněk T (2014) Investigation on early hydration of ternary Portland cement-blast-furnace slag–metakaolin blends. Constr Build Mater 64:333–341.  https://doi.org/10.1016/j.conbuildmat.2014.04.018 CrossRefGoogle Scholar
  8. Boháč M, Palou M, Novotný R, Másilko J, Šoukal F, Opravil T (2016) Influence of temperature on early hydration of Portland cement–metakaolin–slag system. J Therm Anal Calorim 127:309–318.  https://doi.org/10.1007/s10973-016-5592-6 CrossRefGoogle Scholar
  9. Bruker (2011) DIFFRAC.SUITE, User manual, DIFFRAC.EVALUATION PACKAGE DIFFRAC.EVA,Original Instructions. Bruker AXS GmbH, DOC-M88-156 EXX200 V2. 162p.Google Scholar
  10. Carlberg BL, Matthews RR (1973) Solubility of calcium sulfate in brine. In: SPE Oilfield Chemistry Symposium. Society of Petroleum EngineersGoogle Scholar
  11. Cassagnabère F, Escadeillas G, Mouret M (2009) Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete. Constr Build Mater 23:775–784.  https://doi.org/10.1016/j.conbuildmat.2008.02.022 CrossRefGoogle Scholar
  12. Celik E, Nalbantoglu Z (2013) Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng Geol 163:20–25.  https://doi.org/10.1016/j.enggeo.2013.05.016 CrossRefGoogle Scholar
  13. Chahal H (2013) Etude du comportement hydromécanique des sédiments pollués par les PCB en interaction avec les géomatériaux pour un stockage hors site. PhD Thesis, INSA de Lyon, 237 p.Google Scholar
  14. Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:339–352.  https://doi.org/10.1007/s00254-006-0566-9 CrossRefGoogle Scholar
  15. Chatain V, Benzaazoua M, Cazalet ML et al (2013) Mineralogical study and leaching behavior of a stabilized harbor sediment with hydraulic binder. Environ Sci Pollut Res 20:51–59.  https://doi.org/10.1007/s11356-012-1141-4 CrossRefGoogle Scholar
  16. Chen L, Lin D-F (2009) Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. J Hazard Mater 162:321–327.  https://doi.org/10.1016/j.jhazmat.2008.05.060 CrossRefGoogle Scholar
  17. Ciliberto E, Ioppolo S, Manuella F (2008) Ettringite and thaumasite: a chemical route for their removal from cementious artefacts. J Cult Herit 9:30–37.  https://doi.org/10.1016/j.culher.2007.05.004 CrossRefGoogle Scholar
  18. Clément C (1988) Etude de coulis hydrauliques pour la rétention de cations polluants: Pb, Cd, Hg, Sr, Cs. Phd Thesis, ENSMP, 150p.Google Scholar
  19. Cody RD, Cody AM, Spry PG, Lee H (2001) Reduction of concrete deterioration by ettringite using crystal growth inhibition techniques. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011. Iowa DOT TR-431. 112p.Google Scholar
  20. Cokca E, Birand A (1993) Determination of cation exchange capacity of clayey soils by the methylene blue test. GTJ 16:518–524.  https://doi.org/10.1520/GTJ10291J CrossRefGoogle Scholar
  21. Crammond N (2002) The occurrence of thaumasite in modern construction—a review. Cem Concr Compos 24:393–402.  https://doi.org/10.1016/S0958-9465(01)00092-0 CrossRefGoogle Scholar
  22. Deer WA, Howie RA, Zussman J (1962) Rock-forming minerals: vol. 5: non-silicates. Longman, London. 371p. ISBN 0582462134 9780582462137Google Scholar
  23. Degirmenci N, Okucu A, Turabi A (2007) Application of phosphogypsum in soil stabilization. Build Environ 42:3393–3398.  https://doi.org/10.1016/j.buildenv.2006.08.010 CrossRefGoogle Scholar
  24. European Council (2002) Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/ECGoogle Scholar
  25. Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest. 179p. ISBN 978-963-671-288-4Google Scholar
  26. Folk RL, Siedlecka A (1974) The “schizohaline” environment: its sedimentary and diagenetic fabrics as exemplified by Late Paleozoic rocks of Bear Island, Svalbard. Sediment Geol 11:1–15.  https://doi.org/10.1016/0037-0738(74)90002-5 CrossRefGoogle Scholar
  27. Frear GL, Johnston J (1929) The solubility of calcium carbonate (calcite) in certain aqueous solutions at 25. J Am Chem Soc 51:2082–2093CrossRefGoogle Scholar
  28. Frías M, de Rojas MIS, Cabrera J (2000) The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res 30:209–216.  https://doi.org/10.1016/S0008-8846(99)00231-8 CrossRefGoogle Scholar
  29. Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34:1489–1498.  https://doi.org/10.1016/j.cemconres.2004.01.021 CrossRefGoogle Scholar
  30. Göktepe AB, Sezer A, Sezer Gİ, Ramyar K (2008) Classification of time-dependent unconfined strength of fly ash treated clay. Constr Build Mater 22:675–683.  https://doi.org/10.1016/j.conbuildmat.2006.10.008 CrossRefGoogle Scholar
  31. Gruyaert E, Robeyst N, Belie ND (2010) Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim 102:941–951.  https://doi.org/10.1007/s10973-010-0841-6 CrossRefGoogle Scholar
  32. Gueye RS, Davy CA, Cazaux F et al (2017) Mineralogical and physico-chemical characterization of Mbodiene palygorskite for pharmaceutical applications. J Afr Earth Sci 135:186–203CrossRefGoogle Scholar
  33. Guney Y, Sari D, Cetin M, Tuncan M (2007) Impact of cyclic wetting–drying on swelling behavior of lime-stabilized soil. Build Environ 42:681–688.  https://doi.org/10.1016/j.buildenv.2005.10.035 CrossRefGoogle Scholar
  34. Herrero J, Artieda O, Hudnall WH (2009) Gypsum, a tricky material. Soil Sci Soc Am J 73:1757–1763.  https://doi.org/10.2136/sssaj2008.0224 CrossRefGoogle Scholar
  35. Hillier S (2000) Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner 35:291–302CrossRefGoogle Scholar
  36. Hillier S (2003) Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In: Worden RH, Morad S (eds) Clay mineral cements in sandstones. Blackwell Publishing Ltd., pp 213–251Google Scholar
  37. Hillier S, Roe MJ, Geelhoed JS, Fraser AR, Farmer JG, Paterson E (2003) Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Sci Total Environ 308:195–210CrossRefGoogle Scholar
  38. Hubbard CR, Snyder RL (1988) RIR-measurement and use in quantitative XRD. Powder Diffract 3:74–77.  https://doi.org/10.1017/S0885715600013257 CrossRefGoogle Scholar
  39. Hulett GA (1905) The solubility of gypsum as affected by size of particles and by different crystallographic surfaces. J Am Chem Soc 27:49–56.  https://doi.org/10.1021/ja01979a008 CrossRefGoogle Scholar
  40. Hulett GA, Allen LE (1902) The solubility of gypsum. J Am Chem Soc 24:667–679CrossRefGoogle Scholar
  41. Kinuthia JM, Wild S, Jones GI (1999) Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Appl Clay Sci 14:27–45.  https://doi.org/10.1016/S0169-1317(98)00046-5 CrossRefGoogle Scholar
  42. Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edition. Wiley-VCH, 992 p. ISBN 0-471-49369-4Google Scholar
  43. Kulp JL, Kent P, Kerr PF (1951) Thermal study of the Ca-Mg-Fe carbonate minerals. Am Mineral 36:643–670Google Scholar
  44. Lagerwerff JV, Akin GW, Moses SW (1965) Detection and determination of gypsum in soils. Soil Sci Soc Am J 29:535–540.  https://doi.org/10.2136/sssaj1965.03615995002900050019x CrossRefGoogle Scholar
  45. Largent R (1978) Evaluation of pozzolanic activity-attempt at finding a test. Bull. Liaison Labo. P. et Ch. 93: 61-65.Google Scholar
  46. Lasledj A (2009) Traitement des sols argileux à la chaux: processus physico-chimique et propriétés géotechniques. PhD thesis, Orléans, 370 p. Google Scholar
  47. Le Berre P (1989) Les attapulgites (palygorskites) et sépiolites. Bureau de Recherches Géologiques et Minières, OrléansGoogle Scholar
  48. Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res 33:579–584.  https://doi.org/10.1016/S0008-8846(02)01025-6 CrossRefGoogle Scholar
  49. Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40:1341–1349.  https://doi.org/10.1016/j.cemconres.2010.03.020 CrossRefGoogle Scholar
  50. Lin D-F, Lin K-L, Hung M-J, Luo H-L (2007) Sludge ash/hydrated lime on the geotechnical properties of soft soil. J Hazard Mater 145:58–64.  https://doi.org/10.1016/j.jhazmat.2006.10.087 CrossRefGoogle Scholar
  51. Lindgreen H, Geiker M, Krøyer H, Springer N, Skibsted J (2008) Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates. Cem Concr Compos 30:686–699.  https://doi.org/10.1016/j.cemconcomp.2008.05.003 CrossRefGoogle Scholar
  52. Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36:209–226CrossRefGoogle Scholar
  53. Misra A, Biswas D, Upadhyaya S (2005) Physico-mechanical behavior of self-cementing class C fly ash–clay mixtures. Fuel 84:1410–1422.  https://doi.org/10.1016/j.fuel.2004.10.018 CrossRefGoogle Scholar
  54. Mohamed AMO (2000) The role of clay minerals in marly soils on its stability. Eng Geol 57:193–203.  https://doi.org/10.1016/S0013-7952(00)00029-6 CrossRefGoogle Scholar
  55. Molard JP, Camps JP, Laquerbe M (1987) Etude de l’extrusion et de la stabilisation par le ciment d’argiles monominérales. Mater Struct 20:44–50.  https://doi.org/10.1007/BF02472726
  56. Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York (1989) 2nd impression. 400 p.Google Scholar
  57. Moreau J-D, Trincal V, André D et al (2018) Underground dinosaur tracksite inside a karst of southern France: early Jurassic tridactyl traces from the Dolomitic Formation of the Malaval Cave (Lozère). Int J Speleol 47(1):29–42.  https://doi.org/10.5038/1827-806X.47.1.2149 CrossRefGoogle Scholar
  58. Morsy MS (2005) Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system. Ceramics-Silikaty 49:237–241Google Scholar
  59. Möschner G, Lothenbach B, Rose J, Ulrich A, Figi R, Kretzschmar R (2008) Solubility of Fe–ettringite (Ca6[Fe(OH)6]2(SO4)3·26H2O). Geochim Cosmochim Acta 72:1–18.  https://doi.org/10.1016/j.gca.2007.09.035 CrossRefGoogle Scholar
  60. Myneni SC, Traina SJ, Logan TJ (1998) Ettringite solubility and geochemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K. Chem Geol 148:1–19CrossRefGoogle Scholar
  61. Nadeem A, Memon SA, Lo TY (2013) Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and Metakaolin mortar at elevated temperatures. Constr Build Mater 38:338–347.  https://doi.org/10.1016/j.conbuildmat.2012.08.042 CrossRefGoogle Scholar
  62. Nalbantoğlu Z (2004) Effectiveness of Class C fly ash as an expansive soil stabilizer. Constr Build Mater 18:377–381.  https://doi.org/10.1016/j.conbuildmat.2004.03.011 CrossRefGoogle Scholar
  63. NF EN 12457-2 (2002) Lixiviation – Essai de conformité pour lixiviation des déchets fragmentés et des boues. Partie 2 : Essai en bâchée unique avec un rapport liquid-solide de 10 l/kg et une granularité inférieure à 4 mmGoogle Scholar
  64. NF EN ISO 8130-2 (2011) Poudres pour revêtement. Partie 2 : Détermination de la masse volumique à l’aide d’un pycnomètre à gaz (méthode de référence)Google Scholar
  65. NF P 94-068 (1998) Sols : Reconnaissance et essais. Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheuxGoogle Scholar
  66. Nobst P, Stark J (2003) Investigations on the influence of cement type on thaumasite formation. Cem Concr Compos 25:899–906CrossRefGoogle Scholar
  67. Nordstrom DK, Plummer LN, Langmuir D, et al (1990) Revised chemical equilibrium data for major water—mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II; Melchior, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC. pp 398–413Google Scholar
  68. Norman RL, Dann SE, Hogg SC, Kirk CA (2013) Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6[Ga(OH)6·12H2O]2(SO4)3·2H2O and Ca6[M(OH)6·12H2O]2(SO4)2(CO3)2, M = Mn, Sn. Solid State Sci 25:110–117.  https://doi.org/10.1016/j.solidstatesciences.2013.08.006 CrossRefGoogle Scholar
  69. Obuzor GN, Kinuthia JM, Robinson RB (2012) Soil stabilisation with lime-activated-GGBS—a mitigation to flooding effects on road structural layers/embankments constructed on floodplains. Eng Geol 151:112–119.  https://doi.org/10.1016/j.enggeo.2012.09.010 CrossRefGoogle Scholar
  70. Ostroff AG, Metler AV (1966) Solubility of calcium sulfate dihydrate in the system NaCl-MgCl2-H2O from 28° to 70°C. J Chem Eng Data 11:346–350CrossRefGoogle Scholar
  71. Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z Phys Chem 34U:495–503.  https://doi.org/10.1515/zpch-1900-3431 CrossRefGoogle Scholar
  72. Ouhadi VR, Yong RN (2003) The role of clay fractions of marly soils on their post stabilization failure. Eng Geol 70:365–375.  https://doi.org/10.1016/S0013-7952(03)00104-2 CrossRefGoogle Scholar
  73. Palou MT, Kuzielová E, Novotný R, Šoukal F, Žemlička M (2016) Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim 125:1025–1034.  https://doi.org/10.1007/s10973-016-5399-5 CrossRefGoogle Scholar
  74. Perkins RB, Palmer CD (1999) Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75 °C. Geochim Cosmochim Acta 63:1969–1980CrossRefGoogle Scholar
  75. Podor R, Ravaux J, Brau H-P (2012) In situ experiments in the scanning electron microscope chamber. In: Dr. Viacheslav Kazmiruk (Ed.) Scanning electron microscopy, InTech. 31-54.  https://doi.org/10.5772/36433
  76. Pokrovsky OS, Schott J (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. Am J Sci 301:597–626.  https://doi.org/10.2475/ajs.301.7.597 CrossRefGoogle Scholar
  77. Rahhal V, Talero R (2014) Very early age detection of ettringite from pozzolan origin. Constr Build Mater 53:674–679.  https://doi.org/10.1016/j.conbuildmat.2013.10.082 CrossRefGoogle Scholar
  78. Rajasekaran G (2005) Sulphate attack and ettringite formation in the lime and cement stabilized marine clays. Ocean Eng 32:1133–1159.  https://doi.org/10.1016/j.oceaneng.2004.08.012 CrossRefGoogle Scholar
  79. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  80. Santamarina JC, Klein KA, Wang YH, Prencke E (2002) Specific surface: determination and relevance. Can Geotech J 39:233–241CrossRefGoogle Scholar
  81. Seco A, Miqueleiz L, Prieto E, Marcelino S, García B, Urmeneta P (2016) Sulfate soils stabilization with magnesium-based binders. Appl Clay Sci 135:457–464.  https://doi.org/10.1016/j.clay.2016.10.033 CrossRefGoogle Scholar
  82. Seidell A, Smith JG (1904) The solubility of calcium sulphate in solutions of nitrates. J Phys Chem 8:493–499CrossRefGoogle Scholar
  83. SETRA (2011) Acceptabilité de matériaux alternatifs en technique routière. Évaluation environnementale. Guide Méthodologique. Service d’études sur les transports, les routes et leurs aménagements, FranceGoogle Scholar
  84. Sha W, Pereira GB (2001) Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem Concr Compos 23:455–461.  https://doi.org/10.1016/S0958-9465(00)00090-1 CrossRefGoogle Scholar
  85. Shah B, Kakumanu VK, Bansal AK (2006) Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci 95:1641–1665.  https://doi.org/10.1002/jps.20644 CrossRefGoogle Scholar
  86. Shternina EB (1960) Solubility of gypsum in aqueous solutions of salts. Int Geol Rev 2:605–616.  https://doi.org/10.1080/00206816009473496 CrossRefGoogle Scholar
  87. Shukla J, Mohandas VP, Kumar A (2008) Effect of pH on the solubility of CaSO4·2H2O in aqueous NaCl solutions and physicochemical solution properties at 35 °C. J Chem Eng Data 53:2797–2800.  https://doi.org/10.1021/je800465f CrossRefGoogle Scholar
  88. Singer A, Huertos EG, Galan E (2011) Developments in palygorskite-sepiolite research: a new outlook on these nanomaterials. Elsevier. 529 p. ISBN 978-0-444-53607-5Google Scholar
  89. Snyder RL, Bish DL (1989) Quantitative analysis. Rev Mineral Geochem 20:101–144Google Scholar
  90. Talero R (2005) Performance of metakaolin and Portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differences. Cem Concr Res 35:1269–1284.  https://doi.org/10.1016/j.cemconres.2004.10.002 CrossRefGoogle Scholar
  91. Tasong WA, Wild S, Tilley RJD (1999) Mechanisms by which ground granulated blastfurnace slag prevents sulphate attack of lime-stabilised kaolinite. Cem Concr Res 29:975–982.  https://doi.org/10.1016/S0008-8846(99)00007-1 CrossRefGoogle Scholar
  92. Taylor HFW (1997) Cement chemistry. Thomas Telford, 488p. ISBN 978-0-7277-2592-9Google Scholar
  93. Taylor JC, Hinczak I (2006) Rietveld made easy: a practical guide to the understanding of the method and successful phase quantifications. Sietronics Pty Limited. 201 p. ISBN 0975079808Google Scholar
  94. Thiéry V, Bourdot A, Bulteel D (2015) Characterization of raw and burnt oil shale from Dotternhausen: petrographical and mineralogical evolution with temperature. Mater Charact 106:442–451CrossRefGoogle Scholar
  95. Thiéry V, Trincal V, Davy CA (2017) The elusive ettringite under the high-vacuum SEM - a reflection based on natural samples, the use of Monte Carlo modelling of EDS analyses and an extension to the ettringite group minerals. J Microsc 268:84–93.  https://doi.org/10.1111/jmi.12589 CrossRefGoogle Scholar
  96. Thiry M, Carrillo N, Franke C, Martineau N (2013) Technique de préparation des minéraux argileux en vue de l’analyse par diffraction des Rayons X et introduction à l’interprétation des diagrammes. Centre de Géosciences, Ecole des mines de Paris, Fontainebleau, France. Rapport No. RT131010MTHI. 38 p.Google Scholar
  97. Trincal V, Charpentier D, Buatier MD, Grobety B, Lacroix B, Labaume P, Sizun JP (2014) Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Mar Pet Geol 55:160–175CrossRefGoogle Scholar
  98. Warren CJ, Reardon EJ (1994) The solubility of ettringite at 25°C. Cem Concr Res 24:1515–1524.  https://doi.org/10.1016/0008-8846(94)90166-X CrossRefGoogle Scholar
  99. Weaver CE (1975) Construction of limpid dolomite. Geology 3:425–428.  https://doi.org/10.1130/0091-7613(1975)3<425:COLD>2.0.CO;2 CrossRefGoogle Scholar
  100. Wild S, Khatib JM, Jones A (1996) Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res 26:1537–1544.  https://doi.org/10.1016/0008-8846(96)00148-2 CrossRefGoogle Scholar
  101. Wild S, Kinuthia JM, Jones GI, Higgins DD (1998) Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Eng Geol 51:37–53.  https://doi.org/10.1016/S0013-7952(98)00039-8 CrossRefGoogle Scholar
  102. Wild S, Kinuthia JM, Jones GI, Higgins DD (1999) Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of lime with ground granulated blastfurnace slag (GGBS). Eng Geol 51:257–277.  https://doi.org/10.1016/S0013-7952(98)00069-6 CrossRefGoogle Scholar
  103. Xeidakis GS (1996a) Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide. Eng Geol 44:107–120.  https://doi.org/10.1016/S0013-7952(96)00047-6 CrossRefGoogle Scholar
  104. Xeidakis GS (1996b) Stabilization of swelling clays by Mg(OH)2. Factors affecting hydroxy-Mg-interlayering in swelling clays. Eng Geol 44:93–106.  https://doi.org/10.1016/S0013-7952(96)00046-4 CrossRefGoogle Scholar
  105. Yarbaşı N, Kalkan E, Akbulut S (2007) Modification of the geotechnical properties, as influenced by freeze–thaw, of granular soils with waste additives. Cold Reg Sci Technol 48:44–54.  https://doi.org/10.1016/j.coldregions.2006.09.009 CrossRefGoogle Scholar
  106. Yong RN, Ouhadi VR (2007) Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Appl Clay Sci 35:238–249.  https://doi.org/10.1016/j.clay.2006.08.009 CrossRefGoogle Scholar
  107. Yukselen Y, Kaya A (2008) Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol 102:38–45.  https://doi.org/10.1016/j.enggeo.2008.07.002 CrossRefGoogle Scholar
  108. Zemlicka M, Kuzielova E, Kuliffayova M et al (2015) Study of hydration products in the model systems metakaolin–lime and metakaolin–lime–gypsum. Ceramics-Silikáty 59:283–291Google Scholar
  109. Zhang Y, Muhammed M (1989) Solubility of calcium sulfate dihydrate in nitric acid solutions containing calcium nitrate and phosphoric acid. J Chem Eng Data 34:121–124CrossRefGoogle Scholar
  110. Zhang T, Yu Q, Wei J, Gao P, Zhang P (2012) Study on optimization of hydration process of blended cement. J Therm Anal Calorim 107:489–498.  https://doi.org/10.1007/s10973-011-1531-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vincent Trincal
    • 1
    • 2
  • Vincent Thiéry
    • 1
    • 2
  • Yannick Mamindy-Pajany
    • 1
    • 2
  • Stephen Hillier
    • 3
    • 4
  1. 1.Institut Mines-Télécom Lille DouaiLGCgE-GCEDouaiFrance
  2. 2.Université Lille Nord de FranceLilleFrance
  3. 3.The James Hutton InstituteAberdeenUnited Kingdom
  4. 4.Department of Soil and EnvironmentSwedish University of Agricultural Sciences (SLU)SE-UppsalaSweden

Personalised recommendations