Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22872–22888 | Cite as

Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco)

  • Nezha MejjadEmail author
  • Abdelmourhit Laissaoui
  • Ouafa El-Hammoumi
  • Ahmed Fekri
  • Hamid Amsil
  • Adil El-Yahyaoui
  • Azzouz Benkdad
Research Article


The present study evaluates the distribution of metals over the last 100 years in the Oualidia lagoon by examining their concentrations in the sediment cores. The samples were analyzed by instrumental neutron activation analysis and inductively coupled plasma mass spectrometry. Activities of 210Pb, 226Ra, and 137Cs were determined by gamma-ray spectrometry for establishing the age-depth relationships throughout the sediment cores by applying conventional models. The results indicated that the study area is contaminated by As and Cd revealing a detectable anthropogenic input of occurring metals as a consequence of the continuous development of human activities around the lagoon since 1950. The enrichment factor calculated for each layer of the three cores revealed that the studied sediments present no enrichment by Pb, K, and Mn; minor enrichment by Zn, Cr, Co, Cu, V, and Ni; and a moderately to severe enrichment by As and Cd. The pollution load index values increase from the bottom to the top of cores, and ranged from 0.9 to 2.8, which indicates levels of pollutants ranging from background to relatively high concentrations in the investigated sediments.


Sediment Metals Oualidia lagoon 210Pb radiometric dating CRS model CF-CS model Enrichment factor The pollution load index 


Funding information

This work has been supported by the IAEA Research Contract CRP41016 “Study of Global Temporal Trends of Pollution in Selected Coastal Areas by the Application of Isotopic and Nuclear Tools” and the IAEA Technical Cooperation Project RAF7/015.


  1. Abdel-Satar AM (1998) Distribution of some elements in River Nile environment at Great Cairo region (Ph.D. thesis). Fac. of Sci. CairoGoogle Scholar
  2. Abrahim GMS, Parker RJ(2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environ Monit Assess 136:227. CrossRefGoogle Scholar
  3. Acevedo-Figueroa D, Jiménez BD, Rodríguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342CrossRefGoogle Scholar
  4. Alaoui AM, Choura M, Maanan M, Zourarah B, Robin M, Conceiçao MF, Andrade C, Khalid M, Carruesco C (2010) Metal fluxes to the sediments of the Moulay Bousselham lagoon, Morocco. Environ Earth Sci 61(2):275–286CrossRefGoogle Scholar
  5. Alloway BJ, Steinnes E (1999) Anthropogenic addition of cadmium to soils. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 97–123CrossRefGoogle Scholar
  6. Aloupi M, Angelidis MO (2001) Normalization to lithium for the assessment of metal contamination on coastal sediment cores from the Aegean Sea, Greece. Mar Environ Res 52:1–12CrossRefGoogle Scholar
  7. Andreae MO, Andreae TW (1989) Dissolved arsenic species in the sheldt estuary and watershed, Belgium. Estuar Coast Shelf Sci 29:421–433CrossRefGoogle Scholar
  8. Andreae MO, Byrd JT, Froelich PNJ (1983) Arsenic, antimony, germanium and tin in the Tejo estuary Portugal: modelling of a polluted estuary. Environ Sci Technol 17:731–737CrossRefGoogle Scholar
  9. Benaim JY, Mounier S (1998) Metal transport by organic carbon in the Amazon Basin. Croatia Chemica Acta 71:405–419Google Scholar
  10. BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh (four volumes). BGS technical report WC/00/19, British Geological Survey, Keyworth. 2001.Google Scholar
  11. Bhuiyan MAH, Suruvi NI, Dampare SB, Islam MA, Quraishi SB, Ganyaglo S, Suzuki S (2011) Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environ Monit Assess 175:633–649CrossRefGoogle Scholar
  12. Bidet JC, Carruesco C, (1982) Etude sédimentologique de la lagune de Oualidia (Maroc). Oceanologica Acta N° Sp., 29e37.Google Scholar
  13. Birch GF, Taylor SE, Matthai C (2001) Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environ Pollut 113:357–372CrossRefGoogle Scholar
  14. Borg H (1984) Background of trace elements in Swedish fresh water. The National Environmental Protection Board, p. 817Google Scholar
  15. CCME (1999) Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers for the Environment, WinnipegGoogle Scholar
  16. Charlesworth M, Service M (2000) An assessment of metal contamination in Northern Irish coastal sediments. Biology and Environment: Proceedings of the RIA 100B(1):1–12. Retrieved from Google Scholar
  17. Coulibaly AS, Monde S, Wognin VA, Aka K (2009) Analyse des éléments traces métalliques (ETM) dans les baies estuariennes d’Abidjan en Côte d’Ivoire. Afr Sci 5(3):77–96Google Scholar
  18. Davis JR (1984) Intensive survey of the Neches and Sabine Rivers Segment 0601 and 0501. Texas Dept. of Water Resources, Austin. IS-60: pp. 51Google Scholar
  19. Feng H, Han X, Zhang W, Yu L (2004) A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull 49:910–915CrossRefGoogle Scholar
  20. Foster IDL, Mighall TM, Proffitt H, Walling DE, Owens PN (2006) Post-depositional 137Cs mobility in the sediments of three shallow coastal lagoons, SW England. J Paleolimnol 35:881–895CrossRefGoogle Scholar
  21. Goher ME (1998) Factors affecting the precipitation and dissolution of some chemical elements in River Nile at Damietta Branch. (M.Sci. thesis). Fac. of Sci. Menofiya Univ. Egypt. p. 240Google Scholar
  22. Gorman LA, Blow AJ, Ames BD, Reed PL (2011) National guard families after combat: mental health, use of mental health services, and perceived treatment barriers. Psychiatr Serv 62:28–34. CrossRefGoogle Scholar
  23. Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739CrossRefGoogle Scholar
  24. Håkanson L (1980) An ecological risk index for aquatic pollution control—a sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  25. Harikumar PS, Nasir UP (2010) Ecotoxicological impact assessment of heavy metals in core sediments of a tropical estuary. Ecotoxicol Environ Saf 73(2010):1742–1747CrossRefGoogle Scholar
  26. Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee County, KS. Geol 117:287–302Google Scholar
  27. Hazardous Substance Data Bank (HSDB) (2000) Copper. In: TOMES CPS TM SYSTEM. Toxicology, occupational medicine and environmental series. Micromedex, Englewood. CD-ROM.Google Scholar
  28. Hilmi K, Koutitonsky VG, Orbi A, Lakhdar Idrissi J, Chagdali M (2005) Oualidia lagoon, Morocco: an estuary without a river. Afr J Aquat Sci 30:1–10CrossRefGoogle Scholar
  29. Huang XX, Zhu Y, Ji HB (2013) Distribution, speciation, and risk assessment of selected metals in the gold and iron mine soils of the catchment area of Miyun Reservoir, Beijing, China. Environ Monit Assess 185:8525–8545. CrossRefGoogle Scholar
  30. Idardare Z, Moukrim A, Chiffoleau JF, Ait Alla A, Auger D, Rozuel E (2013) Evaluation de la contamination métallique dans deux lagunes Marocaines: Khnifiss et Oualidia. Rev Mar Sci Agron Vét 2:58–67Google Scholar
  31. International Atomic Energy Agency (IAEA) (1989) Measurement of radionuclides in food and the environment. Technical Reports Series No. 295. IAEA, ViennaGoogle Scholar
  32. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chem Geol 114:111–129CrossRefGoogle Scholar
  33. Kadhum SA, Ishak MY, Zulkifli SZ, Binti Hashim R (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Mar Pollut Bull 101:391–396CrossRefGoogle Scholar
  34. Kaimoussi A, Chafik A, Mouzdahir A, Bakkas S (2001) The impact of industrial pollution on the Jorf Lasfar coastal zone (Morocco atlantic ocean): the mussel as an indicator of metal contamination. Cr Acad Sci, Paris, Ser IIa 333:337–341Google Scholar
  35. Laissaoui A, Mas JL, Hurtado S, Ziad N, Villa M, Benmansour M (2013) Radionuclide activities and metal concentrations in sediments of the Sebou estuary, NW Morocco, following a flooding event. Environ Monit Assess 185:5019–5029. CrossRefGoogle Scholar
  36. Lavilla I, Filgueiras AV, Valverde F, Millos J, Palanca A, Bendicho C (2006) Depth profile of trace elements in a sediment core of a high-altitude lake deposit at the Pyreneesm, Spain. Water Air Soil Pollut 172(1–4):273–293CrossRefGoogle Scholar
  37. Legeleux F, Reyss JL, Schmidt S (1994) Particle mixing rates in sediments of the northeast tropical Atlantic: evidence from 210Pbxs, 137Cs, 228Thxs and 234Thxs. Earth Planet Sci Lett 128:545e562CrossRefGoogle Scholar
  38. Li FY, Fan ZP, Xiao PF, Oh K, Ma XP, Hou W (2009) Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 54:1815–1823CrossRefGoogle Scholar
  39. Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29:935–948CrossRefGoogle Scholar
  40. Liu JL, Wu H, Feng JX, Li ZJ, Lin GH (2014) Heavy metal contamination and ecological risk assessments in the sediments and zoobenthos of selected mangrove ecosystems, South China. Catena 119:136–142CrossRefGoogle Scholar
  41. Maanan M (2013) Impact des changements de l’occupation des sols sur l’état de l’environnement dans des écosystèmes côtiers: cas des lagunes d’Oualidia et de Moulay Bousselham (façade atlantique marocaine). Thesis, Univ. Chouaib doukkali. El Jadida, Maroc & Univ de Nantes France.Google Scholar
  42. Maanan M, Zourarah B, Carruesco C, Aajjane A, Naud J (2004) The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan coast). J Afr Earth Sci 39(3–5):473–483CrossRefGoogle Scholar
  43. Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2014) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon. Morocco Ecological Indicators 48(2014):616–626Google Scholar
  44. Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626CrossRefGoogle Scholar
  45. Maanan M, El Barjy M, Hassou N, Zidane H, Zourarah B, Maanan M (2017) Origin and potential ecological risk assessment of trace elements in the watershed topsoil and coastal sediment of the Oualidia lagoon, Morocco. Hum Ecol Risk Assess 24:602–614. CrossRefGoogle Scholar
  46. Mcintyre T (2003) Phytoremediation of heavy metals from soils. Phytoremediation. Springer, Berlin/HeidelbergGoogle Scholar
  47. Mejjad N, Laissaoui A, El-Hammoumi O, Benmansour M, Benbrahim S, Bounouira H, Benkdad A, Bouthir FZ, Fekri A, Bounakhla M (2016) Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco. J Radioanal Nucl Chem 309:1133–1143. CrossRefGoogle Scholar
  48. Miller JN, Miller JC (2000) Statistics in the chemometrics for analytical chemistry. 4th edition. Harlow: England Pearson Education LimitedGoogle Scholar
  49. KC Mirsa (2012) Introduction to geochemistry principals and application. Wiley-Blackwell. ISBN 978–1–4443-5095-1 (cloth) – ISBN 978–1–4051-2142-2 (pbk.).Google Scholar
  50. Mohammad Salah AE, Zaidan TA, Al-Rawi SA (2012) Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq. JJWARP 4:1009–1023CrossRefGoogle Scholar
  51. Nolting R, Ramkema A, Everaarts J (1990) The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Cont Shelf Res 1999 19:665–691CrossRefGoogle Scholar
  52. Oughton DH, Børretzen P, Salbu B, Tronstad E (1997) Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters. Sci Total Environ 202:155–165CrossRefGoogle Scholar
  53. Oyeyiola AO, Olayinka KO, Oluseyi TO, Alo B (2013) Multivariate analysis of potentially toxic metals in sediments of a tropical coastal lagoon. Environ Monit Assess 185:2167–2177. CrossRefGoogle Scholar
  54. Presley BJ, Trefry JH, Shokes RF (1980) Heavy metal inputs to Mississippi Delta sediments. Water Air Soil Pollut 13(4):481–494CrossRefGoogle Scholar
  55. Ramos-Lerate I, Barrera M, Ligero RA, Casas-Ruiz M (1998) A new method for gamma efficiency calibration of voluminal samples in cylindrical geometry. J Environ Radioactivity 38:47–57CrossRefGoogle Scholar
  56. Rigollet V, Sfriso A, Marcomini A, De Casabianca ML (2004) Seasonal evolution of heavy metal concentrations in the surface sediments of two Mediterranean Zostera marina L. beds at Thau lagoon (France) and Venice lagoon (Italy). Bioresour Technol 95(2004):159–167CrossRefGoogle Scholar
  57. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry - the crust. Elsevier, Oxford, pp 1–64Google Scholar
  58. Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manag 90:3382–3390CrossRefGoogle Scholar
  59. Shi Q, Leipe T, Rueckert P, Zhou D, Harff J (2010) Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River estuary, Southern China. J Mar Syst 82:S28–S42CrossRefGoogle Scholar
  60. Sholkovitz ER (1978) The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet Sci Lett 41:77–86CrossRefGoogle Scholar
  61. Silva CSDA, Pedrozo MFM (2001) Ecotoxicologia docromoeseus compostos. Caderno de Referência Ambiental, vol 5.Google Scholar
  62. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, p 312Google Scholar
  63. Thornton I (1992) East sources and pathways of cadmium in the environment. IARC Sci Publ 118:149–162Google Scholar
  64. Tomilson DL, Wilson J, Harris CR, Jeffrey DW (1980) Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresun 33:566–575CrossRefGoogle Scholar
  65. Uluturhan E, Kontas A, Can E (2011) Sediment concentrations of heavy metals in the Homa lagoon (eastern Aegean Sea): assessment of contamination and ecological risks. Mar Pollut Bull 62:1989–1997CrossRefGoogle Scholar
  66. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364CrossRefGoogle Scholar
  67. Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407(2009):853–868CrossRefGoogle Scholar
  68. Vosoughi Moradi A, Sarı A, Akkaya P (2016) Paleoredox reconstruction of bituminous shales from the Miocene Hançili Formation, Çankırı-Çorum Basin, Turkey: evaluating the role of anoxia in accumulation of organic-rich shales. Mar Pet Geol 78:136–150. CrossRefGoogle Scholar
  69. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232CrossRefGoogle Scholar
  70. WHO (2001) Arsenic and arsenic compounds. Environmental health criteria 224. The international program on chemical safety (IPCS)Google Scholar
  71. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze river basin. Environ Pollut 159:2575–2585CrossRefGoogle Scholar
  72. Yuan HZ, Shen J, Liu EF, Wang JJ, Meng XH (2011) Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China. Environ Geochem Health 33:67–81CrossRefGoogle Scholar
  73. Zahra A, Hashni MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci Total Environ 470—471:925–933CrossRefGoogle Scholar
  74. Zhang J, Liu C (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070CrossRefGoogle Scholar
  75. Zhuang J, Yu GR (2002) Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 49(6):619–628CrossRefGoogle Scholar
  76. Zhuang X, Querol X, Zeng R (2000) Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, South China. Int J Coal Geol 45(1):21–37CrossRefGoogle Scholar
  77. Zourarah B (2002) Les processus côtiers actuels et leur impact sur l’environnement littoral des Doukkala (côte atlantique marocaine) : Approche hydrodynamique, Morphologique, sédimentologique et Géochimique. Thèse de Doctorat d’état, 232 p, Université Chouaïb Doukkali El Jadida (Maroc)Google Scholar
  78. Zourarah B, Maanan M, Carruesco C, Aajjane A, Mehdi K, Conceiçao Freitas M (2007) Fifty-year sedimentary record of heavy metal pollution in the lagoon of Oualidia (Moroccan Atlantic coast). Estuar Coast Shelf Sci 72:359–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Géologie Appliqueé, Géomatique et Environnement – Faculté des Sciences - Ben M’sikCasablancaMorocco
  2. 2.Centre National de l’Energie, des Sciences et des Techniques NucléairesRabatMorocco

Personalised recommendations