Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 23082–23090 | Cite as

Sequential extraction of chromium, molybdenum, and vanadium in basic oxygen furnace slags

  • Marina SpankaEmail author
  • Tim Mansfeldt
  • Ruth Bialucha
Research Article


Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1–F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CH3COOH + HCl, F3 Na2EDTA + NH2OH·HCl, and F4 HF + HNO3 + H2O2), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8–107.9% and V, 112.6–87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.


Availability Basic oxygen furnace slag Chromium Molybdenum Sequential extraction procedure Vanadium X-ray diffraction 



We would like to thank two anonymous reviewers and the editor for their comments and suggestions, which significantly helped to improve the article.

Funding information

The IGF-Vorhaben 16622N, of the Forschungsvereinigung VDEh-Gesellschaft zur Förderung der Eisenforschung mbH, was funded by the AiF within the program for sponsorship by the Industrial Joint Research (IGF) of the German Federal Ministry of Economic Affairs and Energy, based on an enactment of the German Parliament.

Supplementary material

11356_2018_2361_MOESM1_ESM.pdf (267 kb)
ESM 1 (PDF 266 kb)


  1. Arabi-Karasgani M, Rashchi F, Mostoufi N, Vahidi E (2010) Leaching of vanadium from LD converter slag using sulfuric acid. Hydrometallurgy 102:14–21. CrossRefGoogle Scholar
  2. Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46CrossRefGoogle Scholar
  3. Blunk G, Kraß K, Kollar J (1983) Erforschung des Langzeitverhaltens von LD-Schlacken als Straßenbaustoff. Forschungsbericht des Landes Nordrhein-Westfalen, Nr. 3170 Fachgruppe Bau/Steine/Erden, Westdeutscher Verlag GmbH, Opladen, doi:
  4. Bogdandy LV and Engell HJ (1971) The reduction of Iron ores: scientific basis and technology. Springer Science and Business Media, Berlin, ISBN 3662104008Google Scholar
  5. Böhmer S, Moser G, Neubauer C, Peltoniemi M, Schachmayer E, Tesae M, Walter B, Winter B (2008) Aggregates case study, final report referring to contract n° 150787-2007 F1SC-AT ‘Aggregates case study—data gathering’, UmweltbundesamtGoogle Scholar
  6. Bruder-Hubscher V, Lagarde F, Leroy MJF, Coughanowr C, Enguehard F (2002) Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Anal Chim Acta 451:285–295. CrossRefGoogle Scholar
  7. Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (1998) A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta 363:45–55. CrossRefGoogle Scholar
  8. Diener S (2009) Ageing behavior of steel slag in landfill liners. Licentiate thesis, University Lulea, Sweden, ISSN: 1402–1757, ISBN 978–91–86233-25-9Google Scholar
  9. Doner HE, and Lynn WC (1989) Carbonate, halide, sulfate, and sulfide minerals. J.B. Dixon and S.B. Weed (ed.), Minerals in Soil Environments, 2nd Edition, Ch 6, p. 331–378Google Scholar
  10. EBV (2017). Verordnung zur Einführung einer Ersatzbaustoffverordnung (EBV), zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung. Referentenentwurf des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB)Google Scholar
  11. Euroslag (2014). Statistics Accessed 08.11.2017
  12. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monitor 4:823–857. CrossRefGoogle Scholar
  13. Földi C, Andree CA, Mansfeldt T (2015) Sequential extraction of inorganic mercury in dumped blast furnace sludge. Environ Sci Pollut Res 22:15755–15762. CrossRefGoogle Scholar
  14. Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedure. Trends Anal Chem 21:451–467. CrossRefGoogle Scholar
  15. van Herck P, Vandecasteele C (2001) Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste. Waste Manag 21:685–694. CrossRefGoogle Scholar
  16. van Hullenbusch ED, Utomo S, Zandvoort MH, Lens PNL (2005) Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta 65:549–558. CrossRefGoogle Scholar
  17. Jakobs A, and Bialucha R (2007) Untersuchungen zum Umweltverhalten von Eisenhüttenschlacken unter dem Gesichtspunkt neuer europäischer Regelungen. Report FEhS-Institut für Baustoff-Forschung 14, Nr 2, 12–16Google Scholar
  18. Macsik J, Jacobsson A (1997) Leachability of V and Cr from LD-slag/Portland cement stabilized sulphide soil. Waste Manag 16:699–709. CrossRefGoogle Scholar
  19. Mäkelä M, Välimäki I, Pöykiö R, Nurmesniemi H, Dahl O (2013) Evaluation of trace element availability from secondary metallurgical slag generated in steelmaking by sequential chemical extraction. Int J Environ Sci Technol 10:1193–1208. CrossRefGoogle Scholar
  20. Mäkelä M, Heikinheimo E, Välimäki I, Dahl O (2015) Characterization of industrial secondary desulpurization slag by chemical fractionation with supportive X-ray diffraction and scanning electron microscopy. Int J Miner Process 134:29–35. CrossRefGoogle Scholar
  21. Matthes S (2000) Mineralogie, Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 6. Auflage, Springer-VerlagGoogle Scholar
  22. Mayoral MC, Andres JM, Bona MT, Higuera V, Belzunce FJ (2008) Yttria stabilized zirconia corrosion destabilization followed by Raman mapping. Surf Coat Technol 202:5210–5216. CrossRefGoogle Scholar
  23. Merkel T (2017) Erzeugung und Nutzung von Eisenhüttenschlacken 2016. Report des FEhS – Institut für Baustoff-Forschung 1:15Google Scholar
  24. Motz H, Geiseler J (2001) Products of steel slag an opportunity to save natural resources. Waste Manag 21:285–293. CrossRefGoogle Scholar
  25. Pickering WF (1986) Metalion speciation—soils and sediments (a review). Ore Geol Rev 1:83–146. CrossRefGoogle Scholar
  26. Proctor DM, Fehling KA, Shay EC, Wittenborn JL, Green JJ, Avent C, Bigham RD, Connolly M, Lee B, Shepker TO, Zak MA (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34:1576–1582. CrossRefGoogle Scholar
  27. Pyrsynska K, Wierzbicki T (2004) Determination of vanadium species in environmental samples. Talanta 64:823–829. CrossRefGoogle Scholar
  28. Quevauviller P, Rauret G, López-Sánchez JF, Rubio R, Ure A, Muntau H (1997) Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci Total Environ 205:223–234. CrossRefGoogle Scholar
  29. Spanka M, Mansfeldt T, Bialucha R (2016) Influence of natural and accelerated carbonation of steel slags on their leaching behavior. Steel Res Int 87:798–810. CrossRefGoogle Scholar
  30. Spanka M, Mansfeldt T, Bialucha R (2017) Chromium, molybdenum, vanadium, and fluoride sorption from steelwork slag eluates by different additives. Int J Environ Sci Technol.
  31. Terzano R, Spagnuolo M, Vekemans B, de Nolf W, Janssens K, Falkenberg G, Fiore S, Ruggiero P (2007) Assessing the origin and fate of Cr, Ni, cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ Sci Technol 41:6762–6769. CrossRefGoogle Scholar
  32. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850. CrossRefGoogle Scholar
  33. Underwood EJ (1976) Molybdenum in biological nitrogen fixation. In: Chappell WRP, Petersen KK (eds) Molybdenum in the Environment. Marcel Denker Inc., New York, USAGoogle Scholar
  34. Ure AM, Quevauviller PH, Muntau H, Griepink B (1993) Speciation of heavy metal in soils and sediments. An account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ An Ch 51:135–151. CrossRefGoogle Scholar
  35. VDI 2267 Blatt 16 (2009) Determination of suspended matter in ambient air—measurement of the mass concentration of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V und Zn as part of dust precipitation by atomic absorption spectrometry (AAS)Google Scholar
  36. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156. CrossRefGoogle Scholar
  37. van Zomeren A, van der Laan SR, Kobesen HBA, Huijgen WJJ, Comans RNJ (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag 31:2236–2244. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geography, Department for GeosciencesUniversity of CologneCologneGermany
  2. 2.Department of Environment and Road ConstructionFEhS – Institut für Baustoff-Forschung e.V.DuisburgGermany

Personalised recommendations