Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22529–22540 | Cite as

Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa

  • Marina Réquilé
  • Dubàn O. Gonzàlez Alvarez
  • Stéphane Delanaud
  • Larbi Rhazi
  • Véronique Bach
  • Flore Depeint
  • Hafida Khorsi-Cauet
Research Article

Abstract

Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF’s impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system’s bacterial and metabolic profiles. Extracts from the SHIME®’s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

Keywords

Caco-2/TC7 Chlorpyrifos Inulin Dysbiosis Microbiota SHIME® 

Abbreviations

CPF

chlorpyriphos

SHIME®

Simulator of the Human Intestinal Microbial Ecosystem

cDNA

complementary DNA

D

day

TLR

Toll-like receptor

TEER

transepithelial electrical resistance

Notes

Acknowledgments

The authors thank David Fraser (Biotech Communication SARL, Ploudalmézeau, France) for copy editing assistance. The authors also wish to thank Cosucra for kindly providing the inulin used in this project.

Authors’ contributions

HKC, FD, and VB designed the research program; HKC and FD conceived and designed the SHIME® and cell-based experiments, respectively; DOGA, MR, and LR performed the experiments and assays; DOGA, MR, and VB analyzed the data; SD contributed materials and analytical tools for the SHIME®; MR, DOGA, FD, and HKC wrote, evaluated, and revised the manuscript. All authors read and approved the final manuscript.

Funding information

This study is supported by the French Ministry of Research and Higher Education through MR’s postgraduate fellowship. They thank the Picardy Regional Council for providing funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11356_2018_2332_MOESM1_ESM.docx (47 kb)
ESM 1 (DOCX 47 kb)

References

  1. Allsopp P, Possemiers S, Campbell D, Oyarzábal IS, Gill C, Rowland I (2013) An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe 22:38–44.  https://doi.org/10.1016/j.anaerobe.2013.05.006 CrossRefGoogle Scholar
  2. Al-Moundhri MS, Al-Khanbashi M, Al-Kindi M et al (2010) Association of E-cadherin (CDH1) gene polymorphisms and gastric cancer risk. World J Gastroenterol 16:3432–3436CrossRefGoogle Scholar
  3. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375.  https://doi.org/10.1128/IAI.01520-08 CrossRefGoogle Scholar
  4. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292.  https://doi.org/10.1016/j.ijfoodmicro.2008.04.012 CrossRefGoogle Scholar
  5. Chaikham P, Apichartsrangkoon A (2014) Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 98:485–495.  https://doi.org/10.1007/s00253-013-4763-7 CrossRefGoogle Scholar
  6. Chen X, Ouyang Q (2010) Study on the molecular expression and regulation of toll pathway in HT-29 cells. Sichuan Da Xue Xue Bao Yi Xue Ban 41:581–585Google Scholar
  7. Cho KM, Math RK, Islam SMA, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57:1882–1889.  https://doi.org/10.1021/jf803649z CrossRefGoogle Scholar
  8. De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J Nutr 130:2599–2606CrossRefGoogle Scholar
  9. Fuentes MS, Briceño GE, Saez JM, et al (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. In: BioMed Res Int. https://www.hindawi.com/journals/bmri/2013/392573/abs/. Accessed 21 Feb 2018
  10. Gao L, Nieters A, Brenner H (2008) Meta-analysis: tumour invasion-related genetic polymorphisms and gastric cancer susceptibility. Aliment Pharmacol Ther 28:565–573.  https://doi.org/10.1111/j.1365-2036.2008.03760.x CrossRefGoogle Scholar
  11. González-Mariscal L, Domínguez-Calderón A, Raya-Sandino A, Ortega-Olvera JM, Vargas-Sierra O, Martínez-Revollar G (2014) Tight junctions and the regulation of gene expression. Semin Cell Dev Biol 36:213–223.  https://doi.org/10.1016/j.semcdb.2014.08.009 CrossRefGoogle Scholar
  12. Harishankar MK, Sasikala C, Ramya M (2013) Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech 3:137–142.  https://doi.org/10.1007/s13205-012-0078-0 CrossRefGoogle Scholar
  13. Joly Condette C, Bach V, Mayeur C et al (2015) Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats. J Pediatr Gastroenterol Nutr 61:30–40.  https://doi.org/10.1097/MPG.0000000000000734 Google Scholar
  14. Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V, Khorsi-Cauet H (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20:2726–2734.  https://doi.org/10.1007/s11356-012-1283-4 CrossRefGoogle Scholar
  15. Kwok LY, Zhang J, Guo Z, Gesudu Q, Zheng Y, Qiao J, Huo D, Zhang H (2014) Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction. PLoS One 9:1–11.  https://doi.org/10.1371/journal.pone.0093631 Google Scholar
  16. Lallès J-P (2014) Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 72:82–94.  https://doi.org/10.1111/nure.12082 CrossRefGoogle Scholar
  17. Lassiter TL, Ryde IT, Mackillop EA et al (2008) Exposure of neonatal rats to parathion elicits sex-selective reprogramming of metabolism and alters the response to a high-fat diet in adulthood. Environ Health Perspect 116:1456–1462.  https://doi.org/10.1289/ehp.11673 CrossRefGoogle Scholar
  18. Lecerf J-M, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, Jacobs H, Lambrey G, Abdelnour AM, Pouillart PR (2012) Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 108:1847–1858CrossRefGoogle Scholar
  19. Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151.  https://doi.org/10.1016/j.cyto.2008.01.006 CrossRefGoogle Scholar
  20. Mainville I, Arcand Y, Farnworth ER (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int J Food Microbiol 99:287–296.  https://doi.org/10.1016/j.ijfoodmicro.2004.08.020 CrossRefGoogle Scholar
  21. Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123.  https://doi.org/10.1186/1471-2180-9-123 CrossRefGoogle Scholar
  22. Marzorati M, den APV, Possemiers S et al (2011) Studying the host-microbiota interaction in the human gastrointestinal tract: basic concepts and in vitro approaches. Ann Microbiol 61:709–715.  https://doi.org/10.1007/s13213-011-0242-5 CrossRefGoogle Scholar
  23. Molly K, van de Woestyne M, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258.  https://doi.org/10.1007/BF00228615 CrossRefGoogle Scholar
  24. Muñoz-González C, Cueva C, Ángeles Pozo-Bayón M, Victoria Moreno-Arribas M (2015) Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors. Food Chem 187:112–119.  https://doi.org/10.1016/j.foodchem.2015.04.068 CrossRefGoogle Scholar
  25. Park MS, Kim MJ, Ji GE (2007) Assessment of lipopolysaccharide-binding activity of Bifidobacterium and its relationship with cell surface hydrophobicity, autoaggregation, and inhibition of interleukin-8 production. J Microbiol Biotechnol 17:1120–1126Google Scholar
  26. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241.  https://doi.org/10.1016/j.cell.2004.07.002 CrossRefGoogle Scholar
  27. Reygner J, Joly Condette C, Bruneau A, Delanaud S, Rhazi L, Depeint F, Abdennebi-Najar L, Bach V, Mayeur C, Khorsi-Cauet H (2016a) Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME(®) model. Int J Environ Res Public Health 13.  https://doi.org/10.3390/ijerph13111088
  28. Reygner J, Lichtenberger L, Elmhiri G, Dou S, Bahi-Jaber N, Rhazi L, Depeint F, Bach V, Khorsi-Cauet H, Abdennebi-Najar L (2016b) Inulin supplementation lowered the metabolic defects of prolonged exposure to chlorpyrifos from gestation to young adult stage in offspring rats. PLoS One 11:e0164614.  https://doi.org/10.1371/journal.pone.0164614 CrossRefGoogle Scholar
  29. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63.  https://doi.org/10.1017/S0007114510003363
  30. Sambuy Y, De Angelis I, Ranaldi G et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26.  https://doi.org/10.1007/s10565-005-0085-6 CrossRefGoogle Scholar
  31. Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49:378–383.  https://doi.org/10.1111/j.1472-765X.2009.02672.x CrossRefGoogle Scholar
  32. Sivieri K, Morales MLV, Saad SMI, Adorno MAT, Sakamoto IK, Rossi EA (2014) Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model). J Med Food 17:894–901.  https://doi.org/10.1089/jmf.2013.0092 CrossRefGoogle Scholar
  33. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736.  https://doi.org/10.1073/pnas.0804812105 CrossRefGoogle Scholar
  34. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW (2008) The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 363:1–25.  https://doi.org/10.1016/j.ijpharm.2008.07.009 CrossRefGoogle Scholar
  35. Steffen EK, Berg RD (1983) Relationship between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes. Infect Immun 39:1252–1259Google Scholar
  36. Terpend K, Possemiers S, Daguet D, Marzorati M (2013) Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME ®). Environ Microbiol Rep 5:595–603.  https://doi.org/10.1111/1758-2229.12056 CrossRefGoogle Scholar
  37. Tirelli V, Catone T, Turco L, di Consiglio E, Testai E, de Angelis I (2007) Effects of the pesticide clorpyrifos on an in vitro model of intestinal barrier. Toxicol in Vitro 21:308–313.  https://doi.org/10.1016/j.tiv.2006.08.015 CrossRefGoogle Scholar
  38. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064CrossRefGoogle Scholar
  39. van de Wiele T, Boon N, Possemiers S et al (2004) Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 51:143–153.  https://doi.org/10.1016/j.femsec.2004.07.014 CrossRefGoogle Scholar
  40. van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460.  https://doi.org/10.1111/j.1365-2672.2006.03084.x Google Scholar
  41. Verhoeckx KCM, Vissers YM, Baumert JL, Faludi R, Feys M, Flanagan S, Herouet-Guicheney C, Holzhauser T, Shimojo R, van der Bolt N, Wichers H, Kimber I (2015) Food processing and allergenicity. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 80:223–240.  https://doi.org/10.1016/j.fct.2015.03.005 CrossRefGoogle Scholar
  42. Vogt L, Meyer D, Pullens G, Faas M, Smelt M, Venema K, Ramasamy U, Schols HA, de Vos P (2015) Immunological properties of inulin-type fructans. Crit Rev Food Sci Nutr 55:414–436.  https://doi.org/10.1080/10408398.2012.656772 CrossRefGoogle Scholar
  43. von Martels JZH, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, Harmsen HJM (2017) The role of gut microbiota in health and disease: in vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 44:3–12.  https://doi.org/10.1016/j.anaerobe.2017.01.001 CrossRefGoogle Scholar
  44. Wang Z, Wang J, Cheng Y, Liu X, Huang Y (2011) Secreted factors from Bifidobacterium animalis subsp. lactis inhibit NF-κB-mediated interleukin-8 gene expression in Caco-2 cells. Appl Environ Microbiol 77:8171–8174.  https://doi.org/10.1128/AEM.06145-11 CrossRefGoogle Scholar
  45. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11:639–647.  https://doi.org/10.1038/nrmicro3089 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marina Réquilé
    • 1
    • 2
  • Dubàn O. Gonzàlez Alvarez
    • 1
    • 2
  • Stéphane Delanaud
    • 1
  • Larbi Rhazi
    • 2
  • Véronique Bach
    • 1
  • Flore Depeint
    • 2
  • Hafida Khorsi-Cauet
    • 1
  1. 1.Equipe PERITOX UMR-I01 INERIS, Centre Universitaire de Recherche en SantéUniversité Picardie Jules VerneAmiensFrance
  2. 2.UP 2018.C103 Transformations & Agro-RessourcesInstitut Polytechnique UniLaSalleBeauvaisFrance

Personalised recommendations