Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 23157–23169 | Cite as

Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China

  • Cheng HuEmail author
  • Shoudong LiuEmail author
  • Yongwei Wang
  • Mi Zhang
  • Wei Xiao
  • Wei Wang
  • Jiaping Xu
Research Article


Anthropogenic CO2 emissions from cities represent a major source contributing to the global atmospheric CO2 burden. Here, we examined the enhancement of atmospheric CO2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world’s most densely populated regions (population greater than 150 million). Tower measurements of CO2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO2 emissions. We simulated the CO2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO2 enhancement of 23.5~49.7 μmol mol−1, 21.4~52.4 μmol mol−1, 28.1~55.4 μmol mol−1, and 29.5~42.4 μmol mol−1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO2 enhancement compared to the other sectors of YRD. The average anthropogenic CO2 emission in 2014 was 0.162 (± 0.005) mg m−2 s−1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m−2 s−1) from the EDGAR emission database.


Anthropogenic CO2 emissions Megacity WRF-STILT model Tall tower observations Yangtze River Delta China 



We would like to express our sincere thanks to Professor Timothy J. Griffis and Professor Xuhui Lee for advice in improving this paper’s logical organization and language, and also thank Professor R. Nassar for providing the hourly scaling factors for the different anthropogenic CO2 source categories. The tall tower data can be accessed at our group website (

Funding information

This research was supported by National Natural Science Foundation of China (grants 41505005 and 41475141), the U.S. National Science Foundation (grants 1640337 and ATM-0546476), the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (grant no. 2014r046), the Natural Science Foundation of Jiangsu Province, China (grant BK20150900), the Ministry of Education of China under grant PCSIRT, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. Ahmadov R, Gerbig C, Kretschmer R, Rner SK, Denbeck CR, Bousquet P et al (2009) Comparing high resolution WRF-VPRM simulations and two global co2 transport models with coastal tower measurements of CO2. Biogeosciences 6(5):807–817CrossRefGoogle Scholar
  2. Ballav S, Patra PK, Sawa Y, Matsueda H, Adachi A, Onogi S et al (2016) Simulation of CO2, concentrations at tsukuba tall tower using wrf-co 2, tracer transport model. J Earth Syst Sci 125(1):47–64CrossRefGoogle Scholar
  3. Bagley JE, Jeong S, Cui X, Newman S, Zhang J, Priest C, Campos-Pineda M, Andrews AE, Bianco L, Lloyd M, Lareau N, Clements C, Fischer ML (2017) Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions. J Geophys Res Atmos 122(3):1901–1918CrossRefGoogle Scholar
  4. Bray CD, Battye W, Aneja VP, Tong D, Lee P, Tang Y, Nowak JB (2017) Evaluating ammonia (NH 3 ) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign. Atmos Environ 163:65–76CrossRefGoogle Scholar
  5. Brown K, et al. (2012) UK Greenhouse Gas Inventory, 1990 to 2010: annual report for submission under the framework convention on climate change. Didcot, AEA Technology, 357 pp.Google Scholar
  6. Bréon FM, Broquet G, Puygrenier V, Chevallier F, Xuerefrémy I, Ramonet M et al (2015) An attempt at estimating paris area CO2 emissions from atmospheric concentration measurements. Atmos Chem Phys 14(7):1707–1724CrossRefGoogle Scholar
  7. Canadell JG, Ciais P, Dhakal S, Han D, Friedlingstein P, Gurney KR et al (2010) Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Curr Opin Environ Sustain 2(4):301–311CrossRefGoogle Scholar
  8. Chen B, Zhang H, Coops NC, Fu D, Worthy DEJ, Xu G et al (2014) Assessing scalar concentration footprint climatology and land surface impacts on tall-tower co 2, concentration measurements in the boreal forest of central Saskatchewan, Canada. Theor Appl Climatol 118(1–2):115–132CrossRefGoogle Scholar
  9. Chen Z, Griffis TJ, Millet DB, Wood J, Lee X, Baker JM et al (2016) Partitioning N2O emissions within the US corn belt using an inverse modeling approach. Glob Biogeochem Cycles 30:1192–1205CrossRefGoogle Scholar
  10. Chen Z, Griffis TJ, Baker JM, Millet DB, Wood JD, Dlugokencky EJ, Andrews AE, Sweeney C, Hu C, Kolka RK (2018) Source partitioning of methane emissions and its seasonality in the U.S. Midwest. J Geophys Res Biogeosci 123:646–659CrossRefGoogle Scholar
  11. European Commission (2009) Joint Research Centre/Netherlands Environmental Assessment Agency, Emission Database for Global Atmospheric Research (EDGAR), release version 4.0. European Environment Agency (EEA), DenmarkGoogle Scholar
  12. Fu C, Lee X, Griffis TJ, Dlugokencky EJ, Andrews AE (2017) Investigation of the N2O emission strength in the U.S Corn Belt. Atmos Res 194:66–77CrossRefGoogle Scholar
  13. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, & Stephens BB, et al. (2003) Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. observed spatial variability from airborne platforms. J Geophys Res Atmos 108(D24), −Google Scholar
  14. Gloor M, Bakwin P, Hurst D, Lock L, Draxler R, Tans P (2001) What is the concentration footprint of a tall tower? J Geophys Res 106(D16):17831–17840. CrossRefGoogle Scholar
  15. Guha T, Ghosh P (2010) Diurnal variation of atmospheric CO2, concentration and δ13 C in an urban atmosphere during winter—role of the nocturnal boundary layer. J Atmos Chem 65(1):1–12CrossRefGoogle Scholar
  16. Gurney KR, Mendoza DL, Zhou Y, Fischer ML, Miller CC, Geethakumar S, de la Rue du Can S (2009) The vulcan project: high resolution fossil fuel combustion CO2 emissions fluxes for the United States. Environ Sci Technol 43(14):5535–5541CrossRefGoogle Scholar
  17. Hu C, Liu SD, Cao C et al (2017) Simulation of atmospheric CO2 concentration and source apportionment analysis in Nanjing City. Acta Sci Circumst 37(10):3862–3875 (in Chinese)Google Scholar
  18. Hu C, Griffis TJ, Lee X, Millet DB, Chen Z, Baker JM, Xiao K (2018) Top-down constraint on anthropogenic CO2 emissions within an agricultural-urban landscape. J Geophys Res Atmos.
  19. Hu L, Millet DB, Mohr MJ, Wells KC, Griffis TJ, Helmig D (2011) Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest. Atmos Chem Phys 11(21):17473–17505CrossRefGoogle Scholar
  20. IPCC (2013) Climate change 2013: the physical science basis, IPCC Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,CambridgeGoogle Scholar
  21. Karion A, Sweeney C, Miller JB, Andrews AE, Commane R, Dinardo S et al (2016) Investigating alaskan methane and carbon dioxide fluxes using measurements from the carve tower. Atmos Chem Phys 16(8):5383–5398CrossRefGoogle Scholar
  22. Kort EA, Frankenberg C, Miller CE, Oda T (2012) Space-based observations of megacity carbon dioxide. Geophys Res Lett 39(17):17806CrossRefGoogle Scholar
  23. Kort EA, Angevine WM, Duren R, Miller CE (2013) Surface observations for monitoring urban fossil fuel CO2, emissions: minimum site location requirements for the Los Angeles megacity. J Geophys Res Atmos 118(3):1577–1584CrossRefGoogle Scholar
  24. Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J et al (2015) Reduced carbon emission estimates from fossil fuel combustion and cement production in china. Nature 524(7565):335CrossRefGoogle Scholar
  25. Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC, Davis KJ et al (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the stochastic time-inverted lagrangian transport (stilt) model. J Geophys Res Atmos 108(4493):1211–1222Google Scholar
  26. Mallia DV, Lin JC, Urbanski S, Ehleringer J, Nehrkorn T (2015) Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah. J Geophys Res Atmos 120(1):147–166CrossRefGoogle Scholar
  27. Mckain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephens BB (2012) Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc Natl Acad Sci U S A 109(22):8423CrossRefGoogle Scholar
  28. Moore J, Jacobson AD (2015) Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: insights from a high-resolution CO2 concentration and δ13C record. Burlingt Mag 3(1109):000052Google Scholar
  29. Miller SM, Matross DM, Andrews AE, Millet DB (2008) Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data. Atmos Chem Phys 8(24):7673–7696CrossRefGoogle Scholar
  30. Ogle SM, Davis K, Lauvaux T, Schuh A, Cooley D, & West TO, et al. (2015) An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data. Environ Res Lett, 10(3)Google Scholar
  31. Pang J, Wen X, Sun X (2016) Mixing ratio and carbon isotopic composition investigation of atmospheric CO2, in Beijing, China. Sci Total Environ 539(539):322–330. CrossRefGoogle Scholar
  32. Pataki DE, Bowling DR, Ehleringer JR (2003) Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: anthropogenic and biogenic effects. J Geophys Res Atmos 108(108):3047–3049Google Scholar
  33. Peylin P, Law RM, Gurney KR, Chevallier F (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10(3):6699–6720CrossRefGoogle Scholar
  34. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Petron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on north american carbon dioxide exchange: carbontracker. Proc Natl Acad Sci U S A 104(48):18925–18930CrossRefGoogle Scholar
  35. Pillai D, Gerbig C, Kretschmer R, Beck V, Karstens U, Neininger B, Heimann M (2012) Comparing Lagrangian and Eulerian models for CO2 transport – a step towards Bayesian inverse modeling using WRF/STILT-VPRM. Atmos Chem Phys 12:8979–8991CrossRefGoogle Scholar
  36. Pillai D, Buchwitz M, Gerbig C, Koch T, Reuter M, Bovensmann H et al (2016) Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany. Atmos Chem Phys 16(15):1–35CrossRefGoogle Scholar
  37. Rosenzweig C, Solecki W, Hammer SA, Mehrotra S (2010) Cities lead the way in climate-change action. Nature 467(7318):909–911CrossRefGoogle Scholar
  38. Rypdal K, Winiwarter W (2001) Uncertainties in greenhouse gas emission inventories—evaluation, comparability and implications. Environ Sci Pol 4(2–3):107–116CrossRefGoogle Scholar
  39. Shen S, Yang D, Xiao W, Liu S, Lee X (2014) Constraining anthropogenic CH emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO and CH mixing ratios. Adv Atmos Sci 31(6):1343–1352CrossRefGoogle Scholar
  40. Sun Y, Frankenberg C, Wood JD et al (2017) OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358(6360):eaam5747CrossRefGoogle Scholar
  41. Satterthwaite D (2008) Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ Urban 20(2):539–550CrossRefGoogle Scholar
  42. Staufer J, Broquet G, Bréon FM et al (2016) The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion. Atmos Chem Phys 16(22):1–34CrossRefGoogle Scholar
  43. Turner AJ, Shusterman AA, Mcdonald BC, Teige V, Harley RA, Cohen RC (2016) Network design for quantifying urban CO2 emissions: assessing trade-offs between precision and network density. Atmos Chem Phys, 16 (21):1–20Google Scholar
  44. Turner AJ, Jacob DJ (2015) Balancing aggregation and smoothing errors in inverse models. Atmos Chem Phys 15(1):1001–1026CrossRefGoogle Scholar
  45. Turnbull JC, Sweeney C, Karion A, Newberger T, Lehman SJ, Tans PP et al (2015) Toward quantification and source sector identification of fossil fuel CO2, emissions from an urban area: results from the influx experiment. J Geophys Res Atmos 120(1, 292):–312Google Scholar
  46. Wang R, Tao S, Ciais P, Shen HZ, Huang Y, Chen H, Shen GF, Wang B, Li W, Zhang YY, Lu Y, Zhu D, Chen YC, Liu XP, Wang WT, Wang XL, Liu WX, Li BG, Piao SL (2013) High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos Chem Phys 13(10):5189–5203CrossRefGoogle Scholar
  47. Xu J, Lee X, Xiao W et al (2017) Interpreting the 13C/12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China. Atmos Chem Phys 17(5):3385–3399CrossRefGoogle Scholar
  48. Zhao Y, Nielsen CP, Mcelroy MB (2012) China’s CO2 emissions estimated from the bottom up: recent trends, spatial distributions, and quantification of uncertainties. Atmos Environ 59:214–223CrossRefGoogle Scholar
  49. Zhao C, Andrews AE, Bianco L, Eluszkiewicz J, Hirsch A, Macdonald C et al (2009) Atmospheric inverse estimates of methane emissions from Central California. J Geophys Res Atmos 114(D16):4723–4734CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC)Nanjing University of Information, Science & TechnologyNanjingChina
  2. 2.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information, Science & TechnologyNanjingChina
  3. 3.Department of Soil, Water, and ClimateUniversity of Minnesota-Twin CitiesSt. PaulUSA
  4. 4.Key Laboratory of Transportation MeteorologyChina Meteorological AdministrationNanjingChina

Personalised recommendations