Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 35949–35959 | Cite as

Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale

  • Sebastián Serna-Loaiza
  • Alfredo Martínez
  • Yuri Pisarenko
  • Carlos Ariel Cardona-AlzateEmail author
Sustainable Waste Management


During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7 × 109 tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 million tonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.


Agroindustrial residues Biorefineries Cocoyam Small scale Starchy feedstocks 



The authors express their acknowledgments to the Universidad Nacional de Colombia at Manizales and the Instituto de Biotecnología y Agroindustria, the program “Jóvenes Investigadores” call No. 761 of Colciencias and the call ERANet LAC project SMIBIO “Modular Small-scale Biorefineries.”


  1. Adedeji TO, Oluwalana IB (2014) Development and quality evaluation of a non-alcoholic beverage from cocoyam (Xanthosoma sagittifolium and Colocasia esculenta). Niger Food J 32(1). Elsevier):10–20. CrossRefGoogle Scholar
  2. Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Peréz LA (2016) Potential of plantain peels flour ( Musa Paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA – J Food 14(1):117–123. CrossRefGoogle Scholar
  3. Andres Quintero J, Felix ER, Rincón LE, Crisspón M, Baca JF, Khwaja Y, Cardona CA (2012) Social and techno-economical analysis of biodiesel production in Peru. Energy Policy 43:427–435. CrossRefGoogle Scholar
  4. Andrés J, Suárez Q (2011) Design and Evaluation of Fuel Alcohol Production from Lignocellulosic Raw Materials. Universidad Nacional de Colombia. Departamento de Ingeniería Eléctrica, Electrónica y Computación. Ph.D. ThesisGoogle Scholar
  5. Aristizábal J, Sánchez T (2007) Guía Técnica Para La Producción Y Análisis de Almidón de Yuca (Spanish). Boletín de Servicios Agrícolas de La FAO. Vol. 163. Rome.
  6. Aristizábal MV, Gómez PA, Cardona ACA (2015) Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products. Bioresour Technol 196:480–489. CrossRefGoogle Scholar
  7. Arora N, Patel A, Sartaj K, Pruthi PA, Pruthi V (2016) Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environ Sci Pollut Res 23(20):20997–20997. CrossRefGoogle Scholar
  8. Association of Official Agricultural Chemists (AOAC) (2016) AOAC 985.29 - Total Dietary Fiber in Foods. In: George W. Jr. Latimer (ed) The Official Methods of Analysis of AOAC INTERNATIONAL, 20th ed. Association of Official Agricultural Chemists (AOAC)Google Scholar
  9. Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40(1). Elsevier Ltd):59–73. CrossRefGoogle Scholar
  10. Borrero-López AM, Fierro V, Jeder A, Ouederni A, Masson E, Celzard A (2017) High added-value products from the hydrothermal carbonisation of olive stones. Environ Sci Pollut Res 24(11):9859–9869. CrossRefGoogle Scholar
  11. Cerón-Salazar I, Cardona-Alzate C (2011) Evaluación Del Proceso Integral Para La Obtención de Aceite Esencial Y Pectina a Partir de La Cáscara de Naranja. Ingeniería Y Ciencia 7(13):65–86 Google Scholar
  12. Dávila JA, Rosenberg M, Cardona CA (2016) A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes berry (Rubus Glaucus Benth): experimental, techno-economic and environmental assessment. Bioresour Technol. Elsevier Ltd 223:227–236. CrossRefGoogle Scholar
  13. Daza Serna LV, Solarte Toro JC, Serna Loaiza S, Chacón Perez Y, Cardona Alzate CA (2016) Agricultural waste management through energy producing biorefineries: the Colombian case. Waste Biomass Valoriz 7(4):789–798. CrossRefGoogle Scholar
  14. Delgado G, Darío Á, Kafarov V. (2011) Microalgae Based Biorefinery: Issues to Consider. A review.CT & F-Cienc. Tecnol. Futuro 4 (4):5–22.
  15. EPA (2016) Chemical process simulation for waste reduction: WAR algorithm.
  16. Falade KO, Okafor CA (2013) Physicochemical properties of five cocoyam (Colocasia Esculenta and Xanthosoma Sagittifolium) starches. Food Hydrocoll 30(1). Elsevier Ltd):173–181. CrossRefGoogle Scholar
  17. Food and Agriculture Organization of the United Nations (1998) Roots, tubers, plantains and bananas in human nutrition. FAO Corporate Document Repository, RomeGoogle Scholar
  18. García CA, Betancourt R, Cardona CA (2015) Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manag Elsevier Ltd 203:695–703. CrossRefGoogle Scholar
  19. Giacometti D, León J (1992) La Agricultura Amazónica Caribeña (Spanish). In: J. E. Hernández Bermejo and J. León (eds) Cultivos Marginados: Otra Perspectiva de 1492. Food and Agriculture Organization of the United Nations Documents: Rome.
  20. Gómez M, LE Acero Duarte (2002) Guía Para El Cultivo Y Aprovechamiento Del Bore Alocasia Macrorrhiza (Linneo) Schott (Spanish). Convenio Andrés Bello. 43p. - il (Serie Ciencia y Tecnología; No. 101).Google Scholar
  21. Grace MR (1997) Cassava Processing. FAO Plant Production and Protection Series No. 3.
  22. Han JS, Rowell JS (1996) Chemical composition of fibers. In: Rowell RM, Young RA, Rowell JK (eds) Paper and Composites from Agro-Based Resources. CRC Press, New YorkGoogle Scholar
  23. Hernández Escalante H, Prada JO, Lesmes HJZ, Ruiz MCC, and Ortega MD (2014) Atlas Del Potencial Energético de La Biomasa Residual En Colombia (Spanish). Vol. 1. Report. Unit of Mining-Energetic Planning of Colombia
  24. Hernández-Carmona F, Morales-Matos Y, Lambis-Miranda H, Pasqualino J (2017) Starch extraction potential from plantain peel wastes. J Environ Chem Eng 5(5). Elsevier):4980–4985. CrossRefGoogle Scholar
  25. Huang HJ, Shri R, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21. CrossRefGoogle Scholar
  26. Ilori M, Adebusoye S, Iawal AK, Awotiwon O (2007) Production of biogas from banana and plantain peels. Adv Envirom Biol 1(1):33–38Google Scholar
  27. Itelima J, Onwuliri F, Onwuliri E, Onyimba I, Oforji S (2013) Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. Int J Environ Sci Dev 4(2):213–216. CrossRefGoogle Scholar
  28. Jesse TW, Ezeji TC, Qureshi N, Blaschek HP (2002) Production of butanol from starch-based waste packing peanuts and agricultural waste. J Ind Microbiol Biotechnol 29(3):117–123. CrossRefGoogle Scholar
  29. Jin Q, Zhang H, Yan L, Qu L, Huang W (2011) Kinetic characterization for hemicellulose hydrolysis of corn Stover in a dilute acid cycle spray flow through reactor at moderate conditions. Biomass Bioenergy 35(10):4158–4164CrossRefGoogle Scholar
  30. Kamm B, Kamm M, Gruber P, Kromus S (2010) Biorefinery systems—an overview. In: Birgit Kamm, Patrick R Gruber, and Michael Kamm(Eds) Biorefineries—industrial processes and products: status quo and future directions, 3–40. Wiley-VCHGoogle Scholar
  31. Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas Mobilis. Biotechnol Lett 23(13):1087–1093CrossRefGoogle Scholar
  32. Moncada J, El-Halwagi MM, Cardona CA (2013) Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresour Technol 135. Elsevier Ltd:533–543. CrossRefGoogle Scholar
  33. Moncada J, Cardona CA, Rincón LE (2015) Design and analysis of a second and third generation biorefinery: the case of castorbean and microalgae. Bioresour Technol 198. Elsevier Ltd:836–843. CrossRefGoogle Scholar
  34. Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G (2011) A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chin J Chem Eng 19(2). Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)):185–191. CrossRefGoogle Scholar
  35. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic Hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10. CrossRefGoogle Scholar
  36. Mussatto SI, Moncada J, Roberto IC, Cardona CA (2013) Techno-economic analysis for Brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresour Technol 148 . Elsevier Ltd:302–310CrossRefGoogle Scholar
  37. Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag 34(12). Elsevier Ltd):2634–2640. CrossRefGoogle Scholar
  38. Neu AK, Pleissner D, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative utilization of coffee mucilage using bacillus Coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production. Bioresour Technol 211. Elsevier Ltd:398–405. CrossRefGoogle Scholar
  39. Okpala LC, Egwu PN (2015) Utilisation of broken Rice and cocoyam flour blends in the production of biscuits. Niger Food J 33(1). Elsevier):8–11. CrossRefGoogle Scholar
  40. Onwueme IC, Charles WB (1994) Tropical root and tuber crops: production, perspectives and future prospects. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  41. Owusu-Darko PG, Paterson A, Omenyo EL (2014) Cocoyam (corms and cormels)—an underexploited food and feed resource. J Agric Chem Environ 3(1):22–29. CrossRefGoogle Scholar
  42. Raman JK, Gnansounou E (2015) Furfural production from empty fruit bunch—a biorefinery approach. Ind Crop Prod 69. Elsevier B.V.:371–377. CrossRefGoogle Scholar
  43. Régnier C, Bocage B, Archimède H, Noblet J, Renaudeau D (2013) Digestive utilization of tropical foliages of cassava, sweet potatoes, wild cocoyam and Erythrina in creole growing pigs. Anim Feed Sci Technol 180(1–4). Elsevier B.V.):44–54. CrossRefGoogle Scholar
  44. Revista Nueva Mineria y Energía (2013) NME, N.m.y.E. LyD Considers Risky the Proposal of an Energetic Development Based on Shale Gas.
  45. Rivera R, Alejandra M (2012) Estudios de Las Características Fisiológicas de La Yuca (Spanish). Universidad Tecnológica De Pereira.
  46. Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ (2014) Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 159:421–432. CrossRefGoogle Scholar
  47. Serna Loaiza S, Aroca G, Cardona CA (2017) Small-scale biorefineries: future and perspectives. In: Torres I (ed) Biorefineries: concepts, advancements and research. Nova Science Publishers, New York, pp 39–72Google Scholar
  48. Shiraishi K, Lauzon RD, Yamazaki M, Sawayama S, Sugiyama N, Kawabata A (1995) Rheological properties of cocoyam starch paste and gel. Top Catal 9(2). Elsevier Ltd.):69–75. CrossRefGoogle Scholar
  49. Sluiter A, B Hames, R Ruiz, C Scarlata, J Sluiter, and D Templeton. 2008a. Determination of ash in biomass laboratory analytical procedure (LAP) Issue Date: 7 / 17 / 2005 Determination of Ash in Biomass Laboratory Analytical Procedure (LAP), no. JanuaryGoogle Scholar
  50. Sluiter A, R Ruiz, C Scarlata, J Sluiter, D Templeton (2008b) Determination of extractives in biomass laboratory analytical procedure (LAP) Issue Date: 7 / 17 / 2005 Determination of Extractives in Biomass Laboratory Analytical Procedure (LAP), no. JanuaryGoogle Scholar
  51. Trivedi NS, Mandavgane SA, Kulkarni BD (2016) Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res 23(20):20087–20099. CrossRefGoogle Scholar
  52. United States Environmental Protection Agency (2014) Chemical process simulation for waste reduction: WAR—WAR GUI V1.0.17Google Scholar
  53. United States Potato Board (2014) Handbook of Potatoes Goodness.
  54. Valcárcel-Yamani B, Rondán-Sanabria GG, Finardi-Filho F (2013) The physical, chemical and functional characterization of starches from Andean tubers: Oca (Oxalis Tuberosa Molina), Olluco (Ullucus Tuberosus Caldas) and Mashua (Tropaeolum Tuberosum Ruiz & Pavón). Braz J Pharm Sci 49(3):453–464. CrossRefGoogle Scholar
  55. Veiga JPS, Valle TL, Feltran JC, Bizzo WA (2016) Characterization and productivity of cassava waste and its use as an energy source. Renew Energy 93:691–699. CrossRefGoogle Scholar
  56. Wei M, Zhu W, Xie G, Lestander TA, Xiong S (2015) Cassava stem wastes as potential feedstock for fuel ethanol production: a basic parameter study. Renew Energy 83:970–978. CrossRefGoogle Scholar
  57. Wooley RJ, Putsche V (1996) Development of an ASPEN PLUS Physical Property Database for Biofuels Components. National Renewable Energy Laboratory. DenverGoogle Scholar
  58. Young D, Cabezas H (1999) Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. Comput Chem Eng 23(10):1477–1491. CrossRefGoogle Scholar
  59. Zhang M, Xie L, Yin Z, Khanal SK, Zhou Q (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215. Elsevier Ltd:50–62. CrossRefGoogle Scholar
  60. Ziegel (2015) Photochemical oxidant formation (Photosmog: production of ground-level ozone).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sebastián Serna-Loaiza
    • 1
  • Alfredo Martínez
    • 2
  • Yuri Pisarenko
    • 3
  • Carlos Ariel Cardona-Alzate
    • 1
    Email author
  1. 1.Instituto de Biotecnología y AgroindustriaUniversidad Nacional de Colombia Sede ManizalesManizalesColombia
  2. 2.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Moscow State Academy of Fine Chemical TechnologyMoscowRussia

Personalised recommendations