Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4404–4414 | Cite as

Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water

  • Jorge Vidal
  • Cesar Huiliñir
  • Rocío Santander
  • Javier Silva-Agredo
  • Ricardo A. Torres-Palma
  • Ricardo SalazarEmail author
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries


Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H2O2), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2.


Degradation of ampicillin, antimicrobial activity decay Photoelectro-Fenton process, hydroxyl radical Mineralization 



The authors thank the financial support of FONDECYT Grant 1170352, DICYT-USACH, CONICYT FONDEQUIP/UHPLC-MS/MS EQM 120065, Universidad de Antioquia UdeA and to COLCIENCIAS project “Desarrollo y evaluación de un sistema electroquímico asistido con luz solar para la eliminación de contaminantes emergentes en agua” (No. 111565842980 Convocatoria 658, 2014). J. Vidal thanks CONICYT for the National PhD scholarship 21140248 and Pacific Alliance Scholarship.

Supplementary material

11356_2018_2234_MOESM1_ESM.docx (69 kb)
ESM 1 (DOCX 68 kb)


  1. Abdessalem AK, Bellakhal N, Oturan N, Dachraoui M, Oturan MA (2010) Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination 250:450–455CrossRefGoogle Scholar
  2. Almeida LC, García-Segura S, Arias C, Bocchi N, Brillas E (2012) Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89:751–758CrossRefGoogle Scholar
  3. Annabi C, Fourcade F, Soutrel I, Geneste F, Floner D, Bellakhal N, Amrane A (2016) Degradation of enoxacin antibiotic by the electro-Fenton process: optimization, biodegradability improvement and degradation mechanism. J Environ Manag 165:96–105CrossRefGoogle Scholar
  4. Anotai J, Singhadech S, Su C, Lu M (2011) Comparison of o-toluidine degradation by Fenton, electro-Fenton and photoelectro-Fenton processes. J Hazard Mater 196:395–401CrossRefGoogle Scholar
  5. Babuponnusami A, Muthukumar K (2012) Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem Eng J 183:1–9CrossRefGoogle Scholar
  6. Bedolla-Guzmán A, Sirés I, Thiam A, Peralta-Hernández JM, Gutiérrez-Granados S, Brillas E (2016) Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of Reactive Yellow 160 azo dye. Electrochim Acta 206:307–316CrossRefGoogle Scholar
  7. Benito A, Penadés A, Lliberia JL, González-Olmos R (2017) Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment. Chemosphere 166:230–237CrossRefGoogle Scholar
  8. Chávez I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B Environ 96:361–369CrossRefGoogle Scholar
  9. Coria G, Sirés I, Brillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton–based electrochemical processes. Chem Eng J 304:817–825CrossRefGoogle Scholar
  10. Cruz-Rizo A, Gutiérrez-Granados S, Salazar R, Peralta-Hernández JM (2017) Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Sep Purif Technol 172:296–302CrossRefGoogle Scholar
  11. Decreto Supremo 609 (1998) Chile: Ministerio Secretaría General de la PresidenciaGoogle Scholar
  12. de Luna MDG, Veciana ML, Su CC, Lu M-C (2012) Acetominophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. J Hazard Mater 217–218:200–207CrossRefGoogle Scholar
  13. Díez AM, Iglesias O, Rosales E, Sanromán MA, Pazos M (2016) Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater. Process Saf Environ Prot 101:72–79CrossRefGoogle Scholar
  14. El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91:1324–1331CrossRefGoogle Scholar
  15. El-Ghenymy A, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I, Brillas E (2015) Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye. Electrochim Acta 182:247–256CrossRefGoogle Scholar
  16. Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R (2016) Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J Hazard Mater 319:24–33CrossRefGoogle Scholar
  17. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous system by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964CrossRefGoogle Scholar
  18. García-Rodríguez O, Bañuelos JA, El-Ghenymy A, Godínez LA, Brillas E, Rodríguez-Valadez FJ (2016) Use of a carbon felt–iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. J Electroanal Chem 767:40–48CrossRefGoogle Scholar
  19. García-Segura S, El-Ghenymy A, Centella F, Rodríguez RM, Arias C, Garrido JA, Cabot PL, Brillas E (2012) Comparative degradation of the diazo dye Direct Yellow 4 by electro-Fenton, photoelectro-Fenton and photo assisted electro-Fenton. J Electroanal Chem 681:36–43CrossRefGoogle Scholar
  20. García-Segura S, Salazar R, Brillas E (2013) Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: influence of Fe3+ and Cu2+ catalysts and identification of oxidation products. Electrochim Acta 113:609–619CrossRefGoogle Scholar
  21. García-Segura S, Brillas E, Cornejo-Ponce L, Salazar R (2016a) Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photoelectron-Fenton. Sol Energy 124:242–253CrossRefGoogle Scholar
  22. García-Segura S, Silva Lima A, Bezerra Cavalcanti E, Brillas E (2016b) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of pyridinium- and imidazolium-based ionic liquids in waters using a BDD/air diffusion cell. Electrochim Acta 198:268–279CrossRefGoogle Scholar
  23. García-Segura S, Anotai J, Singhadech S, Lu M-C (2017) Enhancement of biodegradability of o-toluidine effluents by electro-assisted photo-Fenton treatment. Process Saf Environ Prot 106:60–67CrossRefGoogle Scholar
  24. Giraldo-Aguirre L, Erazo-Erazo ED, Flórez-Acosta OA, Serna-Galvis EA, Torres-Palma RA (2015a) Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chem Eng J 279:103–114CrossRefGoogle Scholar
  25. Giraldo-Aguirre L, Erazo-Erazo ED, Flórez-Acosta OA, Serna-Galvis EA, Torres-Palma RA (2015b) TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: evaluation of matrix components, experimental parameters, degradation pathways and identification. J Photochem Photobiol A Chem 311:95–103CrossRefGoogle Scholar
  26. Katzung BG, Masters SB, Trevor AJ, (2013) Farmacología Básica y Clínica, Mc Graw Hill 12th ediciónGoogle Scholar
  27. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13CrossRefGoogle Scholar
  28. Kummerer K (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J Environ Manag 90:2354–2366CrossRefGoogle Scholar
  29. Liu S, X-r Z, H-y S, R-p L, Y-f F, Y-p H (2013) The degradation of tetracycline in a photo-electro-Fenton system. Chem Eng J 231:441–448CrossRefGoogle Scholar
  30. Masomboon N, Ratanatamskul C, Lu M-C (2010) Mineralization of 2,6-dimethylaniline by photoelectron-Fenton process. Appl Catal A Gen 384:128–135CrossRefGoogle Scholar
  31. Moreira FC, García-Segura S, Boaventura RAR, Brillas E, Vilar VJP (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B Environ 160–161:492–505CrossRefGoogle Scholar
  32. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)-carboxylate complexes. Appl Catal B Environ 162:34–44CrossRefGoogle Scholar
  33. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewater. Appl Catal B Environ 202:217–261CrossRefGoogle Scholar
  34. Olvera-Vargas H, Oturan N, Oturan MA, Brillas E (2015) Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale. Sep Purif Technol 146:127–135CrossRefGoogle Scholar
  35. Pereira GF, El-Ghenymy A, Thiam A, Carlesi C, Eguiluz KIB, Salazar-Banda GR, Brillas E (2016) Effective removal of Orange-G azo dye from water by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode. Sep Purif Technol 160:145–151CrossRefGoogle Scholar
  36. Pérez JF, Llanos J, Sáez C, López P, Cañizares P, Rodrigo MA (2017a) Treatment of real effluents from the pharmaceutical industry: a comparison between Fenton oxidation and conductive-diamond electro-oxidation. J Environ Manag 195:216–223CrossRefGoogle Scholar
  37. Pérez T, Sirés I, Brillas E, Nava JL (2017b) Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate médium. Electrochim Acta 2017:45–56Google Scholar
  38. Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011) Mineralization of acid yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501CrossRefGoogle Scholar
  39. Salazar R, García-Segura S, Ureta-Zañartu MS, Brillas E (2011) Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochim Acta 56:6371–6379CrossRefGoogle Scholar
  40. Salazar C, Contreras N, Mansilla HD, Yánez J, Salazar R (2016) Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode. J Hazard Mater 319:84–92CrossRefGoogle Scholar
  41. Sales Solano AM, García-Segura S, Martínez-Huitle CA, Brillas E (2015) Degradation of acidic aqueous solution of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Appl Catal B Environ 168–169:559–571CrossRefGoogle Scholar
  42. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Torres-Palma RA (2015) Sonochemical degradation of the pharmaceutical fluoxetine: effect of parameters, organic and inorganic additives and combination with a biological system. Sci Total Environ 525:354–360CrossRefGoogle Scholar
  43. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Flórez-Acosta OA, Torres-Palma RA (2016a) Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Sci Total Environ 541:1431–1438CrossRefGoogle Scholar
  44. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Flórez-Acosta OA, Torres-Palma RA (2016b) High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrason Sonochem 31:276–283CrossRefGoogle Scholar
  45. Sirés I, Brillas E (2016) Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. TrAC Trends Anal Chem 70:112–121Google Scholar
  46. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367CrossRefGoogle Scholar
  47. Thiam A, Sirés I, Brillas E (2015) Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectron-Fenton. Water Res 81:178–187CrossRefGoogle Scholar
  48. Vidal J, Huiliñir C, Salazar R (2016) Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes. Electrochim Acta 210:163–170CrossRefGoogle Scholar
  49. Wang A, Li Y-Y, Ledezma Estrada A (2011) Mineralization of antibiotic sulfamethoxazole by photoelectron-Fenton treatment using activated carbon filter cathode and under UVA irradiation. Appl Catal B Environ 102:378–386CrossRefGoogle Scholar
  50. Zazou H, Oturan N, Sonmez-Celebi M, Hamdani M, Oturan MA (2016) Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode. J Electroanal Chem 774:22–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Vidal
    • 1
  • Cesar Huiliñir
    • 2
  • Rocío Santander
    • 1
  • Javier Silva-Agredo
    • 3
  • Ricardo A. Torres-Palma
    • 3
  • Ricardo Salazar
    • 1
    Email author
  1. 1.Laboratorio de Electroquímica del Medio Ambiente (LEQMA), Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH)SantiagoChile
  2. 2.Departamento de Ingeniería Química. Laboratorio de Biotecnología Ambiental, Facultad de IngenieríaUniversidad de Santiago de Chile (USACH)SantiagoChile
  3. 3.Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y NaturalesUniversidad de Antioquia (UdeA)MedellínColombia

Personalised recommendations