Biodegradation of CuTETA, an effluent by-product in mineral processing

  • Alexander M. L. Cushing
  • Sadan Kelebek
  • Siqing Yue
  • Juliana A. Ramsay
Research Article
  • 16 Downloads

Abstract

Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

Keywords

CuTETA Biodegradation Effluent water Metal chelate Copper 

Notes

Acknowledgments

The authors would like to thank Larissa Smith and Joaquin Arrendo for their occasional help during the course of this investigation.

Supplementary material

11356_2018_1877_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. Abumaizar RJ, Smith EH (1999) Heavy metal contaminants removal by soil washing. J Hazard Mater 70:71–86.  https://doi.org/10.1016/S0304-3894(99)00149-1 CrossRefGoogle Scholar
  2. Acosta-Rodríguez I, Cárdenas-González JF (2010) Hexavalent chromium removal by a Paecilomyces sp. fungal strain isolated from environment. Bioinorg Chem Appl 2010:1–6.  https://doi.org/10.1155/2010/676243 Google Scholar
  3. Agorhom EA, Skinner W, Zanin M (2014) Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Miner Eng 57:36–42.  https://doi.org/10.1016/j.mineng.2013.12.010 CrossRefGoogle Scholar
  4. Alexander M (1994) Biodegradation and bioremediation. Academic Press, New YorkGoogle Scholar
  5. Anichina J, Bohme DK (2007) An investigation of the dissociation of complexes of triethylenetetramine with first-row transition-metal dications by electrospray ionization tandem mass spectrometry: remote C{single bond}C bond activation. Int J Mass Spectrom 267:256–262.  https://doi.org/10.1016/j.ijms.2007.02.043 CrossRefGoogle Scholar
  6. Araujo DM, Yoshida MI, Takahashi JA, Carvalho CF, Stapelfeldt F (2010) Biodegradation studies on fatty amines used for reverse flotation of iron ore. Int Biodeterior Biodegrad 64:151–155.  https://doi.org/10.1016/j.ibiod.2010.01.004 CrossRefGoogle Scholar
  7. Baker BJ, Banfield JFEVK et al (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152.  https://doi.org/10.1016/S0168-6496(03)00028-X CrossRefGoogle Scholar
  8. Benner S, Gould W, Blowes D (2000) Microbial populations associated with the generation and treatment of acid mine drainage. Chem Geol 169:435–448.  https://doi.org/10.1016/S0009-2541(00)00219-9 CrossRefGoogle Scholar
  9. Bolton H, Girvin DC, Plymale AE et al (1996) Degradation of metal−nitrilotriacetate complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938.  https://doi.org/10.1021/es950397k CrossRefGoogle Scholar
  10. Carringer RD, Weber JB, Monaco TJ (1975) Adsorption-desorption of selected pesticides by organic matter and montmorillonite. J Agric Food Chem 23:566–572CrossRefGoogle Scholar
  11. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5’-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32:e13.  https://doi.org/10.1093/nar/gnh015 CrossRefGoogle Scholar
  12. Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–138CrossRefGoogle Scholar
  13. Chauhan G, Stein M, Seidel-Morgenstern A, Pant KK, Nigam KDP (2015) The thermodynamics and biodegradability of chelating agents upon metal extraction. Chem Eng Sci 137:768–785.  https://doi.org/10.1016/j.ces.2015.07.028 CrossRefGoogle Scholar
  14. Cooper GJS (2011) Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimerʼs disease. Drugs 71:1281–1320.  https://doi.org/10.2165/11591370-000000000-00000 CrossRefGoogle Scholar
  15. Firestone MK, Tiedje JM (1975) Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Appl Microbiol 29:758–764Google Scholar
  16. Kaluza U, Klingelhöfer P, Taeger K (1998) Microbial degradation of EDTA in an industrial wastewater treatment plantGoogle Scholar
  17. Kelebek S, Wells PF, Heinrich GW, Fekete SO (1995) Adsorption of DETA under dynamic conditions of flotation during depression of pyrrhotite. In: 27th Canadian Mineral Processors Ottawa, Canada. 3:181–187Google Scholar
  18. Lauff JJ, Steele DB, Coogan LA, Breitfeller JM (1990) Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl Environ Microbiol 56:3346–3353Google Scholar
  19. Lu J (2010) Triethylenetetramine pharmacology and its clinical applications. Mol Cancer Ther 9:2458–2467.  https://doi.org/10.1158/1535-7163.MCT-10-0523 CrossRefGoogle Scholar
  20. Marangoni AG (2003) Enzyme kinetics: a modern approach. John Wiley & Sons Inc., HobokenGoogle Scholar
  21. Minister of Justice (Government of Canada) (2016) Metal mining effluent regulations. Ottawa http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/
  22. Pretsch E, Buhlmann P, Badertscher M (2009) Structure determination of organic compounds tables of spectral data, 4th edn. Springer-Verlag, BerlinGoogle Scholar
  23. Renshaw JC, Robson GD, Trinci PJ et al (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142CrossRefGoogle Scholar
  24. Rosenzweig AC, O’Halloran TV (2000) Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol 4:140–147CrossRefGoogle Scholar
  25. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999CrossRefGoogle Scholar
  26. Satroutdinov AD, Dedyukhina EG, Chistyakova TI et al (2000) Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ Sci Technol 34:1715–1720.  https://doi.org/10.1021/es981081q CrossRefGoogle Scholar
  27. Smith RM, Martell AE (1975) Critical stability constants: volume 2 : amines. Springer-Verlag New York Inc., New York CityCrossRefGoogle Scholar
  28. Thomas RAP, Lawlor K, Bailey M, Macaskie LE (1998) Biodegradation of metal-EDTA complexes by an enriched microbial population. Appl Environ Microbiol 64:1319–1322Google Scholar
  29. Tukel C, Kelebek S, Yalcin E (2010) Eh-pH stability diagrams for analysis of polyamine interaction with chalcopyrite and deactivation of Cu-activated pyrrhotite. Can Metall Q 49:411–418.  https://doi.org/10.1179/000844310795937488 CrossRefGoogle Scholar
  30. Van Ginkel CG, Vandenbroucke KL, Stroo CA (1997) Biological removal of EDTA in conventional activated-sludge plants operated under alkaline conditions. Bioresour Technol 59:151–155.  https://doi.org/10.1016/S0960-8524(96)00158-7 CrossRefGoogle Scholar
  31. Vaughan T, Seo CW, Marshall WE (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78:133–139.  https://doi.org/10.1016/S0960-8524(01)00007-4 CrossRefGoogle Scholar
  32. Weber LP, Dubé MG, Rickwood CJ, Driedger K, Portt C, Brereton C, Janz DM (2008) Effects of multiple effluents on resident fish from Junction Creek, Sudbury, Ontario. Ecotoxicol Environ Saf 70:433–445.  https://doi.org/10.1016/j.ecoenv.2007.08.001 CrossRefGoogle Scholar
  33. Weekers PH, Gast RJ, Fuerst P a, Byers TJ (1994) Sequence variations in small-subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol Biol Evol 11:684–690Google Scholar
  34. Witschel M, Nagel S, Egli T (1997) Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J Bacteriol 179:6937–6943CrossRefGoogle Scholar
  35. Yarza P, Yilmaz P, Pruesse E, et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Rev Microbiol 12:635–645. doi:  https://doi.org/10.1038/nmicro3330
  36. Yoon RH, Basilio CI, Marticorena MA, Kerr AN, Stratton-Crawley R (1995) A study of the pyrrhotite depression mechanism by diethylenetriamine. Miner Eng 8:807–816.  https://doi.org/10.1016/0892-6875(95)00041-N CrossRefGoogle Scholar
  37. Yuan Z, VanBriesen JM (2006) The formation of intermediates in EDTA and NTA biodegradation. Environ Eng Sci 23:533–544.  https://doi.org/10.1089/ees.2006.23.533 CrossRefGoogle Scholar
  38. Yuan Z, VanBriesen JM (2008) Bacterial growth yields on EDTA, NTA, and their biodegradation intermediates. Biodegradation 19:41–52.  https://doi.org/10.1007/s10532-007-9113-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander M. L. Cushing
    • 1
  • Sadan Kelebek
    • 1
  • Siqing Yue
    • 2
  • Juliana A. Ramsay
    • 2
  1. 1.The Robert M. Buchan Department of MiningQueen’s UniversityKingstonCanada
  2. 2.Department of Chemical EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations