Mode of action of nanoparticles against insects

Review Article

Abstract

The employment of nanoparticles obtained through various synthesis routes as novel pesticides recently attracted high research attention. An impressive number of studies have been conducted to test their toxic potential against a wide number of arthropod pests and vectors, with major emphasis on mosquitoes and ticks. However, precise information on the mechanisms of action of nanoparticles against insects and mites are limited, with the noteworthy exception of silica, alumina, silver, and graphene oxide nanoparticles on insects, while no information is available for mites. Here, I summarize current knowledge about the mechanisms of action of nanoparticles against insects. Both silver and graphene oxide nanoparticles have a significant impact on insect antioxidant and detoxifying enzymes, leading to oxidative stress and cell death. Ag nanoparticles also reduced acetylcholinesterase activity, while polystyrene nanoparticles inhibited CYP450 isoenzymes. Au nanoparticles can act as trypsin inhibitors and disrupt development and reproduction. Metal nanoparticles can bind to S and P in proteins and nucleic acids, respectively, leading to a decrease in membrane permeability, therefore to organelle and enzyme denaturation, followed by cell death. Besides, Ag nanoparticles up- and downregulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure. The toxicity of SiO2 and Al2O3 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration. In the final section, insect nanotoxicology research trends are critically discussed, outlining major challenges to predict the ecotoxicological consequences arising from the real-world use of nanoparticles as pesticides.

Keywords

Acetylcholinesterase Acute toxicity Alumina nanoparticles Aquatic toxicology CYP450 isoenzymes Dengue Insecticide Integrated vector management Invertebrate toxicology Lyme disease Malaria Mechanism of action Mites Mosquito control Mosquito vectors Polystyrene nanoparticles Silica nanoparticles Silver nanoparticles Ticks Titania nanoparticles Trypsin inhibitor Zinc oxide nanoparticles Zika virus 

Notes

Acknowledgements

The author is grateful to Andrea Lucchi and Angelo Canale for their kind suggestions and comments on an earlier draft of this manuscript.

Compliance with ethical standards

Conflict of interest

Giovanni Benelli declares no competing interests. The mention of trade names or commercial products in this article does not imply recommendation or endorsement by the University of Pisa and Sant’Anna School of Advanced Studies.

References

  1. Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103CrossRefGoogle Scholar
  2. Afrasiabi Z, Popham HJ, Stanley D, Suresh D, Finley K, Campbell J et al (2016) Dietary silver nanoparticles reduce fitness in a beneficial, but not pest, insect species. Archiv Insect Biochem Physiol 93:190–201CrossRefGoogle Scholar
  3. Alyahya SA, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Vaseeharan B, Ishwarya R, Yazhiniprabha M, Benelli G (2018) Swift fabrication of Ag nanostructures using a colloidal solution of Holostemma ada-kodien (Apocynaceae)—antibiofilm potential, insecticidal activity against mosquitoes and non-target impact on water bugs. J Photochem Photobiol B Biol 181:70–79.  https://doi.org/10.1016/j.jphotobiol.2018.02.019 CrossRefGoogle Scholar
  4. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256CrossRefGoogle Scholar
  5. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186.  https://doi.org/10.1371/journal.pone.0053186 CrossRefGoogle Scholar
  6. Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2016) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6:445–450CrossRefGoogle Scholar
  7. Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2017) Toxicity on dengue mosquito vectors through Myristica frangrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226CrossRefGoogle Scholar
  8. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15.  https://doi.org/10.1007/s10340-017-0898-0 CrossRefGoogle Scholar
  9. Ávalos A, Haza AI, Drosopoulou E, Mavragani-Tsipidou P, Morales P (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem Toxicol 85:114–119CrossRefGoogle Scholar
  10. Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117(5):576–581CrossRefGoogle Scholar
  11. Azarudeen RMST, Govindarajan M, Amsath A, Muthukumaran U, Benelli G (2017) Single-step biofabrication of silver nanocrystals using Naregamia alata: a cost effective and eco-friendly control tool in the fight against malaria, Zika virus and St. Louis encephalitis mosquito vectors. J Clust Sci 28(1):179–203Google Scholar
  12. Azarudeen RMST, Govindarajan M, Amsath A, Kadaikunnan S, Alharbi NS, Vijayan P, Muthukumaran U, Benelli G (2016) Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv 6:96573–96583CrossRefGoogle Scholar
  13. Aziz AT, Ali Alshehri M, Panneerselvam C, Murugan K, Trivedi S, Mahyoub JA, Hassan MM, Maggi F, Sut S, Dall’Acqua S, Canale A, Benelli G (2018) The desert wormwood (Artemisia herba-alba)—from Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. J Photochem Photobiol B Biol 180:225–234CrossRefGoogle Scholar
  14. Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B Biol 173:598–605.  https://doi.org/10.1016/j.jphotobiol.2017.06.040 CrossRefGoogle Scholar
  15. Banumathi B, Vaseeharan B, Periyannan R, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017a) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110CrossRefGoogle Scholar
  16. Banumathi B, Vaseeharan B, Ramachandran I, Marimuthu Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017b) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651CrossRefGoogle Scholar
  17. Banumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017c) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci 28:2027–2040.  https://doi.org/10.1007/s10876-017-1201-5 CrossRefGoogle Scholar
  18. Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  19. Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083CrossRefGoogle Scholar
  20. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395CrossRefGoogle Scholar
  21. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  22. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  23. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95:58–68CrossRefGoogle Scholar
  24. Benelli G (2018) Gold nanoparticles—against parasites and insect vectors. Acta Trop 178:73–80.  https://doi.org/10.1016/j.actatropica.2017.10.021 CrossRefGoogle Scholar
  25. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96.  https://doi.org/10.1016/j.actatropica.2017.06.028 CrossRefGoogle Scholar
  26. Benelli G, Duggan MF (2018) Management of arthropod vector data—social and ecological dynamics facing the One Health perspective. Acta Trop 182:80–91CrossRefGoogle Scholar
  27. Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2.  https://doi.org/10.1007/s10876-017-1165-5 CrossRefGoogle Scholar
  28. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  29. Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop 179:47–54CrossRefGoogle Scholar
  30. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36(4):309–318CrossRefGoogle Scholar
  31. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017a) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10CrossRefGoogle Scholar
  32. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, Higuchi A, Alarfaj AA, Mehlhorn H, Canale A (2017b) Nanoparticles as effective acaricides against ticks—a review. Ticks Tick-borne Dis 8:821–826.  https://doi.org/10.1016/j.ttbdis.2017.08.004 CrossRefGoogle Scholar
  33. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A (2018) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-9752-4
  34. Bharani RA, Namasivayam SKR (2017). Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.)(Lepidoptera: Noctuidae)—An eco-friendly approach of insect pest control. J Environ Chem Eng 5(1): 453-467Google Scholar
  35. Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367CrossRefGoogle Scholar
  36. Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Mahesh Kumar P, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R, Aziz AT, Syuhei B, Saleh Alsalhi M, Devanesan S, Nicoletti M, Wei H, Benelli G (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol Res 115:1015–1025.  https://doi.org/10.1007/s00436-015-4829-9
  37. Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36.  https://doi.org/10.3390/ijms17020036 CrossRefGoogle Scholar
  38. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) J Pest Sci 84:99–105CrossRefGoogle Scholar
  39. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  40. Durán N, Durán M, Souza CED (2017) Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. J Braz Chem Soc 28:927–932Google Scholar
  41. Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mat 305:30–40CrossRefGoogle Scholar
  42. Fauci AS, Morens DM (2016) Zika virus in the Americas—yet another arbovirus threat. N Engl J Med 374:601–604.  https://doi.org/10.1056/NEJMp1600297 CrossRefGoogle Scholar
  43. Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRefGoogle Scholar
  44. Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567.  https://doi.org/10.1080/21691401.2017.1329739 CrossRefGoogle Scholar
  45. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Applied Pharmacol 242:326–332CrossRefGoogle Scholar
  46. Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicology 294:61–79CrossRefGoogle Scholar
  47. Ga'al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018). Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49-56Google Scholar
  48. Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  49. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016a) One-pot biosynthesis of silver nanoparticles using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  50. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016b) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B Biol 161:482–489CrossRefGoogle Scholar
  51. Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal Chem 50:1–10CrossRefGoogle Scholar
  52. Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258CrossRefGoogle Scholar
  53. Jayaseelan C, Gandhi PR, Rajasree SRR, Suman TY, Mary RR (2018) Toxicity studies of nanofabricated palladium against filariasis and malaria vectors. Environ Sci Poll Res 25:324–332CrossRefGoogle Scholar
  54. Jha AK, Prasad K (2012) Banana fly (Drosophila sp.) synthesizes CdS nanoparticles! J Bionanosci 6(2):99–103CrossRefGoogle Scholar
  55. Jiang X, Miclăuş T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, Chen C, Beer C (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189CrossRefGoogle Scholar
  56. Jinu U, Vaitheeswari K, Manish T, Benelli G, Venkatachalam P (2018) Nanotitania crystals induced efficient photocatalytic dye degradation, antimicrobial and larvicidal activity. J Photochem Photobiol B Biol 178:496–504CrossRefGoogle Scholar
  57. Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Proc Saf Environ Prot 109:82–96CrossRefGoogle Scholar
  58. Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, Tamilselvan S, Benelli G, Perumal P (2017) Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci 28:1667–1684CrossRefGoogle Scholar
  59. Kavallieratos NG, Athanassiou CG, Peteinatos GG, Boukouvala MC, Benelli G (2018) Insecticidal effect and impact on fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-9565-5
  60. Khater H, Hendawy N, Govindarajan M, Murugan K, Benelli G (2016) Photosensitizers in the fight against ticks: safranin as a novel photodynamic acaricide to control the camel tick Hyalomma dromedarii (Ixodidae). Parasitol Res 115:3747–3758CrossRefGoogle Scholar
  61. Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–472CrossRefGoogle Scholar
  62. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  63. Lee SW, Kim SM, Choi J (2009) Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28:86–91CrossRefGoogle Scholar
  64. Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40:913–922CrossRefGoogle Scholar
  65. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363CrossRefGoogle Scholar
  66. Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):2445CrossRefGoogle Scholar
  67. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Analyt Chem 85:3036–3049CrossRefGoogle Scholar
  68. Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561CrossRefGoogle Scholar
  69. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6): 2243–2253Google Scholar
  70. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  71. Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015c) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654CrossRefGoogle Scholar
  72. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015d) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610CrossRefGoogle Scholar
  73. Murugan K, Jaganathan A, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Wang L, Hwang JS, Wei H, Saleh Alsalhi M, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G (2016a) Synthesis of nanoparticles using chitosan from crab shells: implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328CrossRefGoogle Scholar
  74. Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C, Dinesh D, Chandirasekar R, Kovendan K, Suresh U, Subramaniam J, Paulpandi M, Vadivalagan C, Rajaganesh R, Wei H, Syuhei B, Aziz AT, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016b) Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res 115:1071–1083CrossRefGoogle Scholar
  75. Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016c). Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23(16):16671–16685Google Scholar
  76. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A, Nicoletti M, Benelli G (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-0313-7
  77. Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101(3):550–560CrossRefGoogle Scholar
  78. Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106CrossRefGoogle Scholar
  79. Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37CrossRefGoogle Scholar
  80. Nair PMG, Park SY, Choi J (2013) Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 92:592–599CrossRefGoogle Scholar
  81. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  82. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interf Sci 156(1):1–13CrossRefGoogle Scholar
  83. Narkhede CP, Suryawanshi RK, Patil CD, Borase HP, Patil SV (2016) Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: a novel approach for pest control. Biocatal Agric Biotechnol 8:8–12Google Scholar
  84. Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9(3):396–403CrossRefGoogle Scholar
  85. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979CrossRefGoogle Scholar
  86. Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25CrossRefGoogle Scholar
  87. Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci 52:229–241CrossRefGoogle Scholar
  88. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000-1007Google Scholar
  89. Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344CrossRefGoogle Scholar
  90. Pavunraj M, Baskar K, Duraipandiyan V, Al-Dhabi NA, Rajendran V, Benelli G (2017) Toxicity of Ag nanoparticles synthesized using stearic acid from Catharanthus roseus leaf extract against Earias vittella and mosquito vectors (Culex quinquefasciatus and Aedes aegypti). J Clust Sci 28:2477–2492CrossRefGoogle Scholar
  91. Philbrook NA, Winn LM, Afrooz AN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–436CrossRefGoogle Scholar
  92. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microb Biotechnol 98:1951–1961CrossRefGoogle Scholar
  93. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  94. Rajakumar G, Rahuman AA (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93:303–309CrossRefGoogle Scholar
  95. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel bio-compatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  96. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotox Environ Saf 121:31–38CrossRefGoogle Scholar
  97. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831CrossRefGoogle Scholar
  98. Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda VM, Desimone MF (2016) Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 cells. Current Pharm Biotechnol 17:465–470CrossRefGoogle Scholar
  99. Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, Shi ZH (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem.  https://doi.org/10.1080/02772248.2017.1387786
  100. Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888CrossRefGoogle Scholar
  101. Sooresh A, Kwon H, Taylor R, Pietrantonio P, Pine M, Sayes CM (2011) Surface functionalization of silver nanoparticles: novel applications for insect vector control. ACS Appl Mat Interf 3:3779–3787CrossRefGoogle Scholar
  102. Stadler T, Lopez-Garcia GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70:17–25Google Scholar
  103. Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod 110:2-9Google Scholar
  104. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23:7543–7558CrossRefGoogle Scholar
  105. Subramaniam J, Murugan K, Jebanesan A, Pontheckan P, Dinesh D, Nicoletti M, Wei H, Higuchi A, Kumar S, Canale A, Benelli G (2017) Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae? J Clust Sci 28:413–436CrossRefGoogle Scholar
  106. Suganya P, Vaseeharan B, Vijayakumar S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 173:404–411.  https://doi.org/10.1016/j.jphotobiol.2017.06.004 CrossRefGoogle Scholar
  107. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRefGoogle Scholar
  108. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108CrossRefGoogle Scholar
  109. Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybrid as a biolarvicide. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0712-0
  110. Sundararajan B, Kumari BR (2017). Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43, 187-196Google Scholar
  111. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  112. Teimouri M, Nejad FK, Attar F, Saboury AA, Kostova I, Benelli G, Falahati F (2018) Green fabricated gold nanoparticles: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—a review. J Cleaner Prod 184:740–753.  https://doi.org/10.1016/j.jclepro.2018.02.268 CrossRefGoogle Scholar
  113. Usha Rani P, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87:191–200CrossRefGoogle Scholar
  114. Wilke ABB, Beier JC, Benelli G (2018) Transgenic mosquitoes—fact or fiction? Trends Parasitol.  https://doi.org/10.1016/j.pt.2018.02.003
  115. Xie Y, Wang B, Li F, Ma L, Ni M, Shen W, Hong F, Li B (2014) Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9(6):e101062CrossRefGoogle Scholar
  116. Yakob L, Walker T (2016) Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Glob Health 4(3):e148–e149CrossRefGoogle Scholar
  117. Yasur J, Usha-Rani P (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.The BioRobotics InstituteSant’Anna School of Advanced StudiesPisaItaly

Personalised recommendations