Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 35971–35980 | Cite as

Techno-economic and environmental assessment of biogas production from banana peel (Musa paradisiaca) in a biorefinery concept

  • Jimmy Anderson Martínez-Ruano
  • Ashley Sthefanía Caballero-Galván
  • Daissy Lorena Restrepo-Serna
  • Carlos Ariel CardonaEmail author
Sustainable Waste Management


Two scenarios for the biogas production using Banana Peel as raw material were evaluated. The first scenario involves the stand-alone production of biogas and the second scenario includes the biogas production together with other products under biorefinery concept. In both scenarios, the influence of the production scale on the process economy was assessed and feasibility limits were defined. For this purpose, the mass and energy balances were established using the software Aspen Plus along with kinetic models reported in the literature. The economic and environmental analysis of the process was performed considering Colombian economic conditions. As a result, it was found that different process scales showed great potential for biogas production. Thus, plants with greater capacity have a greater economic benefit than those with lower capacity. However, this benefit leads to high-energy consumption and greater environmental impact.


Biogas Biorefinery Economic assessment Environmental impact 



The authors express their acknowledgments to the project “Development of modular small-scale integrated biorefineries to produce an optimal range of bioproducts from a variety of rural agricultural and agroindustrial residues/wastes with a minimum consumptions of fossile energy - SMIBIO” [Grant number HERMES 30928] from ERANET LAC 2015.


  1. Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R et al (2016) Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA J Food 14:117–123. CrossRefGoogle Scholar
  2. Ali A (2017) Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environ Nanotechnol, Monit Manag 7:57–63. CrossRefGoogle Scholar
  3. Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng 22:219–225. CrossRefGoogle Scholar
  4. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6:246–256. CrossRefGoogle Scholar
  5. Boyle WC (1977) Energy recovery from sanitary landfills - a review. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Göttingen, pp 119–138.
  6. Bridgwater AV (1995) The technical and economic feasibility of biomass gasif ication for power generation. Fuel 14:631–653CrossRefGoogle Scholar
  7. Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sust Energ Rev 54:1148–1171. CrossRefGoogle Scholar
  8. Buswell AM, Mueller HF (1952) Mechanism of Methane Fermentation. Ind Eng Chem 44:550–552.
  9. Cabezas H, Bare JC, Mallick SK (1999) Pollution prevention with chemical process simulators: the generalized waste reduction (WAR) algorithm—full version. Comput Chem Eng 23:623–634. CrossRefGoogle Scholar
  10. Cardona C, Marulanda V, Young D (2004) Analysis of the environmental impact of butylacetate process through the WAR algorithm. Chem Eng Sci 59:5839–5845. CrossRefGoogle Scholar
  11. Cerón-Salazar I, Cardona-Alzate C (2011) Integral evaluation process for obtaining pectin and essential oil from orange peel. Ing Cienc 7:1794–9165Google Scholar
  12. Córdoba V, Fernández M, Santalla E (2017) The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ Sci Pollut Res.
  13. Correa M, Bombardelli MCM, Fontana PD, Bovo F, Messias-Reason IJ, Maurer JBB, Corazza ML (2016) Bioactivity of extracts of Musa paradisiaca L. obtained with compressed propane and supercritical CO2. J Supercrit Fluids 122:63–69. CrossRefGoogle Scholar
  14. Dávila JA, Hernández V, Castro E, Cardona CA (2014) Economic and environmental assessment of syrup production. Colombian case. Bioresour Technol 161:84–90CrossRefGoogle Scholar
  15. Dávila JA, Rosenberg M, Cardona CA (2017) A biorefinery for efficient processing and utilization of spent pulp of Colombian Andes Berry (Rubus glaucus Benth.): experimental, techno-economic and environmental assessment. Bioresour Technol 223:227–236. CrossRefGoogle Scholar
  16. Dibenedetto A, Colucci A, Aresta M (2016) The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Environ Sci Pollut Res 23:22274–22283. CrossRefGoogle Scholar
  17. García CA, Moncada J, Aristizábal V, Cardona CA (2017) Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: coffee cut-stems case. Int J Hydrog Energy 2:5849–5864. CrossRefGoogle Scholar
  18. Heinrich A (2007) Biogas: can it be an important source of energy? Environ Sci Pollut Res 14:67–71. CrossRefGoogle Scholar
  19. Hernández V, Romero-García JM, Dávila JA, Castro E, Cardona CA (2014) Techno-economic and environmental assessment of an olive stone based biorefinery. Resour Conserv Recycl 92:145–150. CrossRefGoogle Scholar
  20. Jekayinfa SO, Scholz V (2013) Laboratory Scale Preparation of Biogas from Cassava Tubers, Cassava Peels, and Palm Kernel Oil Residues. Energy Sources Part a-Recovery Util Environ Eff 35:2022–2032.
  21. Ketiku AO (1973) Chemical composition of unripe (green) and ripe plantain (musa paradisiaca). J Sci Food Agric 24:703–707. CrossRefGoogle Scholar
  22. Makara A, Kowalski Z (2018) Selection of pig manure management strategies: case study of polish farms. J Clean Prod 172:187–195. CrossRefGoogle Scholar
  23. Manatura K, Lu J-H, Wu K-T, Hsu H-T (2017) Exergy analysis on torrefied rice husk pellet in fluidized bed gasification. Appl Therm Eng 111:1016–1024. CrossRefGoogle Scholar
  24. Manjusha C, Beevi BS (2016) Mathematical modeling and simulation of anaerobic digestion of solid waste. Procedia Technol 24:654–660. CrossRefGoogle Scholar
  25. Martinez a, Rodriguez ME, Wells ML et al (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293. CrossRefGoogle Scholar
  26. Moncada J, El-Halwagi MM, Cardona CA (2013a) Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresour Technol 135:533–543. CrossRefGoogle Scholar
  27. Moncada J, Matallana LG, Cardona CA (2013b) Selection of process pathways for biorefinery design using optimization tools: a colombian case for conversion of sugarcane bagasse to ethanol, poly-3-hydroxybutyrate (PHB), and energy. Ind Eng Chem Res 52:4132–4145. CrossRefGoogle Scholar
  28. Moncada J, Hernández V, Chacón Y, et al (2016a) Citrus based biorefineries. In: Simmons D (ed) Citrus Fruits: Production, Consumption and Health Benefits. Nova Publishers, pp 1–26Google Scholar
  29. Moncada BJ, Aristiztibal MV, Cardona ACA (2016b) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134. CrossRefGoogle Scholar
  30. Mussatto SI, Moncada J, Roberto IC, Cardona CA (2013) Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresour Technol 148:302–310. CrossRefGoogle Scholar
  31. Mussatto SI, Santos JC, Filho WCR, Silva SS (2014) Purification of xylitol from fermented hemicellulosic hydrolyzate using liquid-liquid extraction and precipitation techniques. Appl Energy 123:108–120. CrossRefGoogle Scholar
  32. Pathak P, Mandavgane S, Kulkarni B (2016) Valorization of banana peel: a biorefinery approach. Rev Chem Eng 32:651–666. CrossRefGoogle Scholar
  33. Peu P, Picard S, Diara A, Girault R, Béline F, Bridoux G, Dabert P (2012) Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour Technol 121:419–424. CrossRefGoogle Scholar
  34. Pitt WW, Haag GL, Lee DD (1983) Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol Bioeng 25:123–131. CrossRefGoogle Scholar
  35. Quintero JA, Cardona CA (2009) Ethanol dehydration by adsorption with starchy and cellulosic materials. Ind Eng Chem Res 48:6783–6788. CrossRefGoogle Scholar
  36. Quintero JA, Cardona CA (2011) Process Simulation of Fuel Ethanol Production from Lignocellulosics using Aspen Plus. Ind Eng Chem Res 50:6205–6212.
  37. Quintero JA, Felix ER, Rincón LE et al (2012) Social and techno-economical analysis of biodiesel production in Peru. Energy Policy 43:427–435. CrossRefGoogle Scholar
  38. Rivera EC, Costa AC, Atala DIP, Maugeri F, Maciel MRW, Filho RM (2006) Evaluation of optimization techniques for parameter estimation: application to ethanol fermentation considering the effect of temperature. Process Biochem 41:1682–1687. CrossRefGoogle Scholar
  39. Sultana A, Kumar A (2011) Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour Technol 102:9947–9956. CrossRefGoogle Scholar
  40. Swamy GJ, Muthukumarappan K (2017) Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem 220:108–114. CrossRefGoogle Scholar
  41. Toivanen H, Novotny M (2017) The emergence of patent races in lignocellulosic biofuels, 2002–2015. Renew Sust Energ Rev 77:318–326. CrossRefGoogle Scholar
  42. Wang H, Brown SL, Magesan GN, Slade AH, Quintern M, Clinton PW, Payn TW (2008) Technological options for the management of biosolids. Environ Sci Pollut Res - Int 15:308–317. CrossRefGoogle Scholar
  43. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. CrossRefGoogle Scholar
  44. World Economic Forum (2010) The Future of Industrial Biorefineries. IWBIO Industrial Experts in Biotechnology. Accessed 01 November 2017.
  45. Young D, Cabezas H (1999) Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. Comput Chem Eng 23:1477–1491. CrossRefGoogle Scholar
  46. Young D, Scharp R, Cabezas H (2000) The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Manag 20:605–615. CrossRefGoogle Scholar
  47. Zhang Y, Li H (2017) Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge. Environ Sci Pollut Res.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jimmy Anderson Martínez-Ruano
    • 1
  • Ashley Sthefanía Caballero-Galván
    • 1
  • Daissy Lorena Restrepo-Serna
    • 1
  • Carlos Ariel Cardona
    • 1
    Email author
  1. 1.Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería QuímicaUniversidad Nacional de Colombia sede ManizalesManizalesColombia

Personalised recommendations