Detection of the natural origin hydrocarbon contamination in carbonate aquifers (central Apennine, Italy)

  • Sergio Rusi
  • Diego Di Curzio
  • William Palmucci
  • Riccardo Petaccia
Research Article
  • 54 Downloads

Abstract

The water–rock interaction is discussed in this study for some Central Apennine aquifers and their relative springs, where the geological and hydrogeological setting is potentially responsible for hydrocarbon contamination. The contamination is related to the presence of limestone formations with high organic content that are connected to the genesis of hydrocarbons in the Central-Southern Apennines. Thanks to a multidisciplinary approach based on a seasonal monitoring of hydrogeological, hydrogeochemical, organic chemical, and isotopic variables, and to a detailed geological analysis, it was possible to demonstrate that the bituminous schists within the bituminous dolomite formation (a Triassic Formation presents in the Gran Sasso acquifer), the bituminous intercalations within the Bolognano Formation (an Olocenic calcareous Formation in the Majella acquifer), and the petroleum-saturated rocks of the Bolognano Formation (in the Morrone acquifer) are all able to leach hydrocarbons into groundwater. The results suggest that more detailed studies are required for areas where lithologies with fossil organic components are present. Insights should further investigate the interaction between groundwater and rocks in terms of organic compounds as well as inorganic compounds. In particular, the study also suggests that the supplementary quantification of hydrocarbon compounds in bituminous rock and the leaching tests are analyses that provide reliable results. From the normative point of view, the results of the study can be useful when dealing with hydrocarbon contamination resulting from anthropogenic activities within catchments where formations with high concentration of organic matter are present. In these cases, it will possible to assess the natural background concentrations and review the threshold values upwards.

Keywords

Natural contamination Hydrocarbons Bituminous formations Petroleum springs Groundwater Central Apennines 

Notes

Acknowledgements

The authors thank Dr Sigismondi M., Dr Iride R., Dr Di Michele R., and Prof. Adamoli L. for their precious field work. We are also grateful to the Regional Agency for the Protection of the Environment (Agenzia Regionale per la Tutela dell’Ambiente, ARTA) for the chemical analyses and for the valuable suggestions of the analysts. In the end, we thank the four anonymous reviewers for their precious comments and revisions.

References

  1. Accarie H, Beaudoin B, Cussey R, Joseph P, Triboulet S (1986) Dynamique sedimentaire et structurale au passage plateforme/bassin. Les facies carbonates cretaces du Massif de la Majella (Abruzzes, Italie). Mem Soc Geol Ital 36:217–231Google Scholar
  2. Adamoli L, Bertini T, Chiocchini M, Deiana G, Mancinelli A, Pieruccini U, Romano A (1978) Ricerche geologiche sul Massiccio del Gran Sasso d’Italia (Abruzzo). II. Evoluzione tettonico-sedimentaria dal Trias superiore al Cretaceo inferiore dell’area compresa tra il Corno Grande e S. Stefano di Sessanio (F.140 Teramo). Studi Geol Camerti 7:7–17Google Scholar
  3. Adamoli L, Bigozzi A, Ciarapica G, Simonetta C, Passeri L, Romano A, Duranti F, Venturi F (1990) Upper Triassic bituminous facies and Hettangian pelagic facies in the Gran Sasso range. Boll Soc Geol It 109:219–230Google Scholar
  4. Adamoli L, Mancinelli A, Pieruccini U, Romano A (1984) Ricerche geologiche sul Gran Sasso d’Italia (Abruzzo). VIII. Età e significato paleo ambientale degli “Scisti Bituminosi”. Studi Geol Camerti 9:7–14Google Scholar
  5. Adinolfi Falcone R, Carucci V, Falgiani A, Manetta M, Parisse B, Petitta M, Rusi S, Spizzico M, Tallini M (2012) Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L'Aquila earthquake. Ital J Geosci 131(3):459–474.  https://doi.org/10.3301/IJG.2012.05 Google Scholar
  6. Adinolfi Falcone R, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (δ18O‰, δ2H‰, δ13C‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory—Central Italy). J Hydrol 357:368–388.  https://doi.org/10.1016/j.jhydrol.2008.05.016 CrossRefGoogle Scholar
  7. Amoruso A, Crescentini L, Petitta M, Rusi S, Tallini M (2011) Impact of the April 6, 2009 L’aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol Process 25:1754–1764.  https://doi.org/10.1002/hyp.7933 CrossRefGoogle Scholar
  8. Amoruso L, Crescentini L, Petitta M, Tallini M (2013) Parsimonious recharge/discharge modeling in carbonate fractured aquifers: the groundwater flow in the Gran Sasso aquifer (Central Italy). J Hydrol 476:136–146.  https://doi.org/10.1016/j.jhydrol.2012.10.026 CrossRefGoogle Scholar
  9. Barbieri M, D’Amelio L, Desiderio G, Marchetti A, Nanni T, Petitta M, Rusi S, Tallini M (2002) Gli isotopi ambientali (18O, 2H e 87Sr/86Sr) nelle acque sorgive dell’Appennino abruzzese: considerazioni sui circuiti sotterranei negli acquiferi carbonatici [The Environmental isotopes(18O, 2H and 87Sr, 86Sr) in spring waters of the Abruzzi Apennines: consideration over the subterranean circuit in carbonatic aquifer]. Proceedings of the I convegno AIGA, Chieti , 69–81.Google Scholar
  10. Boni C, Bono P, Capelli G (1986) Schema Idrogeologico dell’Italia Centrale. Mem Soc Geol Ital 35:991–1012 With hydrogeological maps 1:500˙000Google Scholar
  11. Calamita F, Deiana G (1996) Correlazioni tra gli eventi deformativi neogenico-quaternari del settore tosco-umbro-marchigiano. Studi Geologici Camerti vol spec 1995(/1):137–152Google Scholar
  12. Catalano PG, Cavinato GP, Salvini F, Tozzi M (1986) Analisi strutturale nei laboratori dell'INFN del Gran Sasso d'Italia. Mem Soc Geol Ital 35:647–655Google Scholar
  13. Celico P (1979) Schema idrogeologico dell’Appennino carbonatico centro meridionale. Mem Note Ist Geol Appl Univ Napoli 14:1–97Google Scholar
  14. Celico P (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale: Progetti speciali per gli schemi idrici nel Mezzogiorno. Quaderni Cassa del Mezzogiorno 4(2):1–225Google Scholar
  15. Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64CrossRefGoogle Scholar
  16. Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3–4):165–241.  https://doi.org/10.1016/S0169-7722(00)00109-1 CrossRefGoogle Scholar
  17. Ciarapica G (2007) Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian–Hettangian history of the Apennine basins. Palaeogeogr Palaeoclimatol Palaeoecol 244:34–51.  https://doi.org/10.1016/j.palaeo.2006.06.022 CrossRefGoogle Scholar
  18. Cipollari P, Cosentino D, Parotto M (1995) Modello cinematico-strutturale dell’Italia centrale. Studi Geologici Camerti vol spec 1995(/2):135–143Google Scholar
  19. Conese M, Nanni T, Peila C, Rusi S, Salvati R (2001) Idrogeologia della Montagna del Morrone (Appennino Abruzzese): dati preliminari [hydrogeology of the Morrone Mountain structure (Abruzzi Apennine-Central Italy): preliminar data]. Mem Soc Geol Ital 56:181–196Google Scholar
  20. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  21. Crescenti U (1969) Stratigrafia della serie calcarea dal Lias al Miocene nella regione marchigiano abruzzese (parte I: Descrizione delle serie stratigrafiche). Mem Soc Geol Ital 8:155–204Google Scholar
  22. Crescenti U, Crostella A, Donzelli G, Raffi G (1969) Stratigrafia della serie calcarea dal Lias al Miocene nella regione marchigiano abruzzese (parte II: litostratigrafia, biostratigrafia, paleogeografia). Mem Soc Geol Ital 8:343–420Google Scholar
  23. Desiderio G, Rusi S (2004) Hydrogeology and hydrochemistry of the mineralised waters of the Abruzzo and Molise foredeep (Central Italy) [Idrogeologia e idrogeochimica delle acque mineralizzate dell'Avanfossa Abruzzese Molisana]. Boll Soc Geol Ital 123(3):373–389Google Scholar
  24. Desiderio G, Ferracuti L, Rusi S, Tatangelo F (2005) Il contributo degli isotopi naturali 18O e 2H nello studio delle idrostrutture carbonatiche abruzzesi e delle acque mineralizzate nell’area abruzzese e molisana [the contribution of 18O and 2H natural isotopes to the analysis of Abruzzo and Molise carbonate hydrostructures and mineralized groundwaters (Central Italy)]. Giornale di Geol Applicata 2:453–458.  https://doi.org/10.1474/GGA.2005-02.0-66.0092 Google Scholar
  25. Desiderio G, Rusi S, Tatangelo F (2010) Hydrogeochemical characterization of Abruzzo groundwaters and relative anomalies. [Caratterizzazione idrogeochimica delle acque sotterranee abruzzesi e relative anomalie]. Ital J Geosci 129(2):207–222.  https://doi.org/10.3301/IJG.2010.05. Google Scholar
  26. Donzelli G (1998) Studio geologico della Majella. Dipartimento di Scienze della Terra, Università «G. d’Annunzio», Chieti. Tipografia R. Di Virgilio, Chieti Scalo (Italy), pp. 49Google Scholar
  27. Eberli GP, Bernoulli D, Sanders D, Vecsei A (1993) From aggradation to progradation: the Majella platform, Abruzzi, Italy. A.A.P.G. Memoir 56:213–232Google Scholar
  28. ENI (1962) Enciclopedia del Petrolio e del gas naturale [encyclopedia of petroleum and natural gas], vol 6. Ente Nazionale Idrocarburi, Colombo Editore, pp 314–772Google Scholar
  29. EPA 8260 B (1996) Method 8260b: volatile organic compounds by gas chromatography/mass spectrometry (Gc/Ms). US Environmental Protection Agency. https://www.epa.gov/hw-sw846/sw-846-test-method-8260b-volatile-organic-compounds-gas-chromatographymass-spectrometry
  30. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Union 327:1–73 Available at: http://eur-lex.europa.eu/legal-con-tent/EN/TXT/HTML/?uri=CELEX:32000L0060&from=EN Google Scholar
  31. European Commission (2006) Directive 2006/118/EC of the European Parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Union 372:19–31 Available at http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006L0118&qid=1513623552795&from=EN Google Scholar
  32. Fiorillo F, Petitta M, Preziosi E, Rusi S, Esposito L, Tallini M (2015) Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ Earth Sci. 74/1:153–172.  https://doi.org/10.1007/s12665-014-3946-6 CrossRefGoogle Scholar
  33. Ganor J, Reznik IJ, Rosenberg YO (2009) Organics in water-rock interactions. Rev Mineral Geochem 70:259–369.  https://doi.org/10.2138/rmg.2009.70.7 CrossRefGoogle Scholar
  34. Gratzer R, Sachsenhofer RF, Bechtel A, Gawlick HJ (2015) Geogenic versus anthropogenic: hydrocarbons in the spoil from the Falkenstein and Spering tunnels (A9 Pyhrn autobahn, Austria). Geomech Tunnelling 8(4):356–363.  https://doi.org/10.1002/geot.201500018 CrossRefGoogle Scholar
  35. Ghisetti F, Vezzani L (1986) Assetto geometrico ed evoluzione strutturale della catena del Gran Sasso tra Vado di Siella e Vado di Corno. Boll Soc Geol Ital 105:131–171Google Scholar
  36. Ghisetti F, Vezzani L (1991) Thrust geometries and sequence of imbrication in the Gran Sasso chain (central Apennines, Italy). Boll Soc Geol Ital 110:427–440Google Scholar
  37. Ghisetti F, Vezzani L (1997) Interfering paths of deformation and development of arcs in the fold-and-thrust belt of the central Apennines (Italy). Tectonics 16(3):523–536.  https://doi.org/10.1029/97TC00117 CrossRefGoogle Scholar
  38. Gonfiantini R (1978) Standards for stable isotopes measurements in natural compounds. Nature 271:534–536CrossRefGoogle Scholar
  39. IRSA-CNR-APAT (2003) Rapporti 29/2003—norma 5160: Sostanze oleose (grassi e oli animali e vegetali; idrocarburi totali). Istituto di Ricerca sulle Acque - Consiglio Nazionale delle Ricerche - Agenzia per la protezione dell’ambiente e per i servizi tecnici. ISBN: 88–448–0083-7 http://www.irsa.cnr.it/Docs/Capitoli/1000.pdf
  40. ISO 748 (1997) Measurement of liquid flow in open channels. In: Velocity area methods. International Organization for Standardization, GeneveGoogle Scholar
  41. ISPRA (in print) Note illustrative della Carta Geologica d’Italia scala 1:50000, sheet 349-Gran Sasso http://www.isprambiente.gov.it/Media/carg/note_illustrative/349_Gran_Sasso.pdf
  42. Italian Republic (2006) DL 152 2006 legislative decree 3 April 2006: environmental regulation. Official Bulletin of the Italian Republic, general series n. 88, Ordinary Supplement n 96. [Decreto Legislativo 3 Aprile 2006, N. 152: Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana, Serie Generale n.88 del 14–4-2006 - Suppl. Ordinario n. 96].Google Scholar
  43. Italian Republic (2009) DL 30 2009 Legislative decree 16 March 2009: implementation of Directive 2006/118/EC on the protection of groundwater against pollution and deterioration. Official Bulletin of the Italian Republic, General Series n 79 [Decreto legislativo 16 Marzo 2009 N.30: Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento. Gazzetta Ufficiale della Repubblica Italiana, Serie Generale n.79 del 4–4-2009]Google Scholar
  44. Lesage S, Xu H, Novakowski KS (1997) Distinguishing natural hydrocarbons from anthropogenic contamination in ground water. Groundwater 35:149–160.  https://doi.org/10.1111/j.1745-6584.1997.tb00070.x CrossRefGoogle Scholar
  45. Longinelli A, Selmo E, (2003) Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology 270(1-2):75-88CrossRefGoogle Scholar
  46. McMahon PB, Chapelle FH (2008) Redox processes e water quality of selected principal aquifer systems. Groundwater 46(2):259–271.  https://doi.org/10.1111/j.1745-6584.2007.00385.x CrossRefGoogle Scholar
  47. Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J Contam Hydrol 6(2):107–163.  https://doi.org/10.1016/0169-7722(90)90043-G CrossRefGoogle Scholar
  48. Mossman D, Nagy B (1996) Solid bitumens: an assessment of their characteristics, genesis, and role in geological processes. Terra Nova 8:114–128CrossRefGoogle Scholar
  49. Mudarra M, Andreo B, Barberà JA, Mudry J (2013) Hydrochemical dynamics of TOC and NO3 contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71:507–523.  https://doi.org/10.1007/s12665-013-2593-7 CrossRefGoogle Scholar
  50. Muller D, Blum A, Hart A, Hookey J, Kunkel R, Scheidleder A, Tomlin C, Wendlandbridge F (2006) Final proposal for a methodology to set up groundwater treshold values in Europe, 1–63. “BRIDGE” Background cRiteria for the iDentification of Groundwater thresholds, Project co-funded by the European Commission within the Sixth Framework Programme (2002–2006)Google Scholar
  51. Nanni T, Rusi S (2003) Idrogeologia del massiccio carbonatico della Majella (Abruzzo) [Hydrogeology of the Montagna della Majella carbonate massif (central Apennines–Italy)]. Boll Soc Geol Ital 122(2):173–202Google Scholar
  52. Nanni T, Vivalda P (1999) Le acque solfuree della regione marchigiana [the sulphureous springs of the marchean region (Italy)]. Boll Soc Geol Ital 118(3):585–599Google Scholar
  53. Palmucci W, Rusi S (2014) Boron-rich groundwater in central eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. Environ Earth Sci 72(12):5139–5157.  https://doi.org/10.1007/s12665-014-3384-5 CrossRefGoogle Scholar
  54. Palmucci W, Rusi S, Di Curzio D (2016a) Mobilisation processes responsible for iron and manganese contamination of groundwater in central Adriatic Italy. Environ Sci Pollut Res 23(12):11790–11805.  https://doi.org/10.1007/s11356-016-6371-4 CrossRefGoogle Scholar
  55. Palmucci W, Rusi S, Tatangelo F (2016b) Ring maps applied to hydrogeological and environmental studies in alluvial aquifers, Central Italy. J Maps 12(1):33–44.  https://doi.org/10.1080/17445647.2014.977973 CrossRefGoogle Scholar
  56. Passeri L (2005) Sedimentary structures in the Triassic bituminous dolostones of the eastern Gran Sasso range. Boll Soc Geol Ital 124:601–609Google Scholar
  57. Patacca E, Scandone P, Bellatalla M, Perilli N, Santini U (1991) La zona di giunzione tra l’arco appenninico settentrionale e l’arco appenninico meridionale nell’Abruzzo e nel Molise. Studi Geologici Camerti vol spec 1991/2 CROP11:417–441Google Scholar
  58. Petaccia R, Rusi S (2008) Idrogeologia delle sorgenti del Ruzzo (Gran Sasso d’Italia) [hydrogeology of Ruzzo springs (Gran Sasso massif, Central Italy)]. Giornale di Geologia Applicata 8(1):17–28.  https://doi.org/10.1474/GGA.2008-08.1-02.0212 Google Scholar
  59. Petaccia R, Rusi S (2009) Natural origin of hydrocarbon contamination in waters of carbonatic and terrigenous domains of Abruzzi Apennines: preliminary data. Rend Online Soc Geol Ital 6:370–371 http://rendiconti.socgeol.it/244/fulltext.html?ida=2098 Google Scholar
  60. Petaccia R, Rusi S (2010) Natural origin hydrocarbon contamination in waters of carbonatic domains of Abruzzi Apennines. Rend Online Soc Geol Ital 11:478–479 http://rendiconti.socgeol.it/244/fulltext.html?ida=1912 Google Scholar
  61. Petitta M, Tallini M (2002) Idrodinamica sotterranea del massiccio del Gran Sasso (Abruzzo): nuove indagini idrologiche, idrogeologiche e idrochimiche [Groundwater hydrodinamic of the Gran Sasso Massif (Abruzzi): new hydrological, hydrpgeological and hydrochemical surveys (1994–2001)]. Boll Soc Geol Ital 121:343–363Google Scholar
  62. Prommer H, Barry DA, Davis GB (1999) A one-dimensional reactive multi-component transport model for biodegradation of petroleum hydrocarbons in groundwater. Environ Model Softw 30(6):423–435.  https://doi.org/10.1016/S0146-6380(99)00027-3 Google Scholar
  63. Pulido-Bosch A, López-Chicano M, Calaforra JM, Calvache ML, Machkova M, Dimitrov D, Velikov B, Pentchev P (1999) Groundwater problems in the karstic aquifers of the Dobrich region, northeastern Bulgaria. Hydrol Sci J 44(6):913–927CrossRefGoogle Scholar
  64. Scisciani V, Rusciadelli G, Calamita F (2000) The influence of syn-orogenic normal faults on the Pliocene thrust system development: the Majella structure (central Apennines, Italy). Mem Soc Geol Ital 55:193–204Google Scholar
  65. Scozzafava M, Tallini M (2001) Net infiltration in the gran Sasso massif of Central Italy using the Thornthwaite water budget and curve-number method. Hydrogeol J 9(5):461–475.  https://doi.org/10.1007/s100400100151 CrossRefGoogle Scholar
  66. Stoppani A. (1875) Il Bel Paese. Casa Editrice Cogliati (Cogliati publishing house), Milan.Google Scholar
  67. Tallini M, Adinolfi Falcone R, Carucci V, Falgiani A, Parisse B, Petitta M (2014) Isotope hydrology and geochemical modeling: new insights into the recharge processes and water–rock interactions of a fissured carbonate aquifer (Gran Sasso, Central Italy). Environ Earth Sci 72(12):4957–4971.  https://doi.org/10.1007/s12665-014-3364-9 CrossRefGoogle Scholar
  68. Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water–rock interaction in the Gran Sasso (Central Italy) carbonate aquifer. Hydrogeol J 21(7):1447–1467.  https://doi.org/10.1007/s10040-013-1023-y CrossRefGoogle Scholar
  69. Tissier G, Perrette Y, Dzikowski M, Poulenard J, Hoble’a F, Malet E, Fanget B (2013) Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps). J Hydrol 482:139–148CrossRefGoogle Scholar
  70. UNI 10802 (2004) norma 10802 Rifiuti liquidi, granulari, pastosi e fanghi - campionamento manuale e preparazione ed analisi degli eluati,. “test di cessione”. [Waste - Liquid, granular, pasty wastes and sludges - Manual sampling and preparation and analysis of eluates] Ente Nazionale Italiano di Unificazione. http://store.uni.com/magento-1.4.0.1/index.php/uni-10802-2004.html
  71. Vecsei A, Sanders D (1997) Sea-level highstand and lowstand shedding related to shelf margin aggradation and emersion, upper Eocene-Oligocene of Majella carbonate platform, Italy. Sediment Geol 112:219–234CrossRefGoogle Scholar
  72. Vecsei A, Sanders D (1999) Facies analysis and sequence stratigraphy of a Miocene warm-temperate carbonate ramp, Montagna della Majella, Italy. Sediment Geol 123:103–127CrossRefGoogle Scholar
  73. Vezzani L, Ghisetti F (1998) Carta geologica dell’Abruzzo, scale 1:100˙000 [Geological map of the Abruzzo Region]. S.EL.CA, FirenzeGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering and Geology DepartmentUniversity “G. d’Annunzio” Chieti-PescaraPescaraItaly

Personalised recommendations