Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29971–29982 | Cite as

Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming

  • Vanessa AndreuEmail author
  • Annabel Levert
  • Anaïs Amiot
  • Anaïs Cousin
  • Nicolas Aveline
  • Cédric Bertrand
Chemistry, Activity and Impact of Plant Biocontrol products


Five plant extracts traditionally used in organic and biodynamic farming for pest control and antifungal (downy mildew) disease management were selected after a farmer survey and analyzed for their chemical composition in LC-PDA-MS-MS and using adapted analytical method from food chemistry for determination of class of component (e.g., protein, sugar, lipids…). Their antifungal activity against Penicillium expansum, Botrytis cinerea, Botrytis allii, brown rot causing agents (Monilinia laxa and Monilinia fructigena), and grape downy mildew (Plasmopara viticola) was examined in vitro. White willow (Salix alba) and absinthe (Artemisia absinthium) ethanolic extracts were found to be the most effective in particular against Plasmopara viticola, with a total inhibition of spores germination when applied at 1000 mg/L. These extracts also showed a relatively low toxicity during preliminary ecotoxicological assays on Daphnia pulex. Extract from the bark of white willow contained some flavonoids, especially flavanones (eriodyctiol and derivates) and flavanols (catechins and derivates), as major compounds, whereas absinthe extract was rich in O-methylated flavanols and hydroxycinnamic acids. Thujone content in this extract was also determined by external calibration in GC-MS analysis, and its value was 0.004% dry extract.


Hydroalcoholic plant extracts Organic and biodynamic farming Chemical characterization Antifungal in vitro activity 



The spectroscopic experiments have been performed using the “Biodiversité et Biotechnologies Marines” (Bio2Mar) facilities at the University of Perpignan.

This project was support by Perpignan University Foundation and French Ministry in charge of Agriculture through the CASDAR project “4P” (Protection des Plantes Par les Plantes).

The authors gratefully thank Jeanine ALMANY for providing English language editing (as well as constructing comments) which improved the manuscript.


  1. Agnolet S, Wiese S, Verpoorte R, Staerk D (2012) Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography—solid-phase extraction—nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay. J Chromatogr A 1262:130–137. CrossRefGoogle Scholar
  2. Association Of Analytic Chemistry (2005) AOAC Official Method 985.29 (A-D) In: Official Methods of Analysis of AOAC international, 18th edn. GaithersburgGoogle Scholar
  3. Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4):402–412. CrossRefGoogle Scholar
  4. Blagojević P, Radulović N, Palić R, Stojanović G (2006) Chemical composition of the essential oils of Serbian wild-growing Artemisia absinthium and Artemisia vulgaris. J Agric Food Chem 54(13):4780–4789. CrossRefGoogle Scholar
  5. Bruneton J (1999) Pharmacognosie, Phytochimie plantes médicinales, Lavoisier Tec & Doc, 3rd edn, ParisGoogle Scholar
  6. Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134(2):324–333. CrossRefGoogle Scholar
  7. Carbonara T, Pascale R, Argentieri MP, Papadia P, Fanizzi FP, Villanova L, Avato P (2012) Phytochemical analysis of a herbal tea from Artemisia annua L. J Pharm Biomed Anal 62:79–86. CrossRefGoogle Scholar
  8. Carnat A, Heitz A, Fraisse D, Carnat AP, Lamaison JL (2000) Major dicaffeoylquinic acids from Artemisia vulgaris. Fitoterapia 71(5):587–589. CrossRefGoogle Scholar
  9. Chen M, Zhai L, Arendrup M (2015) In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med Mycol 53:194–198CrossRefGoogle Scholar
  10. Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cuncumber roots infected by Pythium spp. Mol Plant Pathol 84:236–242Google Scholar
  11. Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MS identification of chlorogenic acids. J Agric Food Chem 51(10):2900–2911. CrossRefGoogle Scholar
  12. Commision Services (2007) Working document of the Commission Services - DRAFT Comparison between EU and GHS Criteria Human Health and EnvironmentGoogle Scholar
  13. Cook R, Hennell JR, Lee S, Khoo CS, Carles MC, Higgins VJ, Govindaraghavan S, Sucher NJ (2013) The Saccharomyces cerevisiae transcriptome as a mirror of phytochemical variation in complex extracts of Equisetum arvense from America, China, Europe and India. BMC Genomics 14(1):445. CrossRefGoogle Scholar
  14. Couteux A, Lejeune A (2015) Index phytosanitaire. ACTA, ParisGoogle Scholar
  15. Dane Y, Mouhouche F, Canela-Garayoa R, Delpino-Rius A (2016) Phytochemical analysis of methanolic extracts from Artemisia absinthium L. 1753 (Asteraceae), Juniperus phoenicea L., and Tetraclinis articulata (Vahl) Mast, 1892 (Cupressaceae) and evaluation of their biological activtiy for stored grain protection. Arab J Sci Eng 41(6):247–2158. CrossRefGoogle Scholar
  16. Du Q, Jerz G, Winterhalter P (2004) Preparation of three flavonoids from the bark of Salix alba by high-speed countercurrent chromatographic separation. J Liq Chromatogr Relat Technol 27(20):3257–3264. CrossRefGoogle Scholar
  17. Esatbeyoglu T, Winterhalter P (2010) Preparation of dimeric Procyanidins B1, B2, B5, and B7 from a polymeric procyanidin fraction of black chokeberry (Aronia melanocarpa). J Agric Food Chem 58(8):5147–5153. CrossRefGoogle Scholar
  18. Francescato LN, Debenedetti SL, Schwanz TG, Bassani VL, Henriques AT (2013) Identification of phenolic compounds in Equisetum giganteum by LC–ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 105:192–203. CrossRefGoogle Scholar
  19. Frey S, Carver TLW (1998) Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. J Phytopathol 146:239–245CrossRefGoogle Scholar
  20. Garcia D, Garcia-Cela E, Ramos AJ, Sanchis V, Marín S (2011) Mould growth and mycotoxin production as affected by Equisetum arvense and Stevia rebaudiana extracts. Food Control 22(8):1378–1384. CrossRefGoogle Scholar
  21. Garcia D, Ramos AJ, Sanchis V, Marín S (2013) Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize: Equisetum arvense hydro-alcoholic extract. J Sci Food Agric 93(9):2248–2253. CrossRefGoogle Scholar
  22. Gonzalez-Coloma A, Bailen M, Diaz CE, Fraga BM, Martínez-Díaz R, Zuñiga GE, Contreras RA, Cabrera R, Burillo J (2012) Major components of Spanish cultivated Artemisia absinthium populations: antifeedant, antiparasitic, and antioxidant effects. Ind Crop Prod 37(1):401–407. CrossRefGoogle Scholar
  23. Guével MH, Menzies JG, Bélanger RR (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119(4):429–436. CrossRefGoogle Scholar
  24. Han J, Ye M, Qiao X, Xu M, Wang B, Guo DA (2008) Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J Pharm Biomed Anal 47(3):516–525. CrossRefGoogle Scholar
  25. Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) a-Thujone (the active component of absinthe): g-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci 97(8):3826–3831. CrossRefGoogle Scholar
  26. International Organization For Standardization (1973) ISO 1443. Meat and meat products. Determination of total fat content. In: International organization for standardization, GenevaGoogle Scholar
  27. Ivanescu B, Vlase L, Corciova A, Lazar MI (2010) HPLC-DAD-MS study of polyphenols from Artemisia absinthium, A. annua, and A. vulgaris. Chem Nat Compd 46(3):468–470. CrossRefGoogle Scholar
  28. Julio L, Burillo J, Giménez C, Cabrera R, Díaz C, Sanz J, González-Coloma A (2015) Chemical and biocidal characterization of two cultivated Artemisia absinthium populations with different domestication levels. Ind Crop Prod 76:787–792. CrossRefGoogle Scholar
  29. Kammerer B, Kahlich R, Biegert C, Gleiter CH, Heide L (2005) HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem Anal 16(6):470–478. CrossRefGoogle Scholar
  30. Lachenmeier DW, Nathan-Maister D, Breaux TA, Sohnius EM, Schoeberl K, Kuballa T (2008) Chemical composition of vintage preban absinthe with special reference to thujone, fenchone, pinocamphone, methanol, copper, and antimony concentrations. J Agric Food Chem 56(9):3073–3081. CrossRefGoogle Scholar
  31. Lee SJ, Chung HY, Maier CGA, Wood AR, Dixon RA, Mabry TJ (1998) Estrogenic flavonoids from Artemisia vulgaris L. J Agric Food Chem 46(8):3325–3329. CrossRefGoogle Scholar
  32. Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69(8):1732–1738. CrossRefGoogle Scholar
  33. Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné R, Švarc-Gajić J, Segura-Carretero A (2014) The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods 10:192–200. CrossRefGoogle Scholar
  34. Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T (2000) Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus d omestica L.) J Agric Food Chem 48(11):5512–5516. CrossRefGoogle Scholar
  35. OECD (2004) OECD n° 202: daphnia sp., acute immobilisation test and reproduction, test organisation for economic co-operation and development, ParisGoogle Scholar
  36. Pobłocka-Olech L, van Nederkassel AM, Vander Heyden Y, Krauze-Baranowska M, Glód D, Baczek T (2007) Chromatographic analysis of salicylic compounds in different species of the genus Salix. J Sep Sci 30(17):2958–2966. CrossRefGoogle Scholar
  37. Suárez-Quiroz ML, Alonso Campos A, Valerio Alfaro G, González-Ríos O, Villeneuve P, Figueroa-Espinoza MC (2015) Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters. Mic Pathogen 61-62:51–56CrossRefGoogle Scholar
  38. Rodrigues FÁ, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93(5):535–546. CrossRefGoogle Scholar
  39. Slingleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  40. Tala V, Candida da Silva V, Rodrigues C, Nkengfack A, Campaner dos Santos L, Vilegas W (2013) Characterization of Proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by Flow Injection Analysis — Electrospray Ionization Ion Trap Tandem Mass Spectrometry and Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Molecules 18:2803–2820. CrossRefGoogle Scholar
  41. Yamaji K, Ichihara Y (2012) The role of catechin and epicatechin in chemical defense against damping-off fungi ofcurrent-year Fagus crenata seedlings in natural forest. For Path 42:1–7. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de PerpignanPerpignan CedexFrance
  2. 2.Société AkinaoPerpignan CedexFrance
  3. 3.Institut Français de la Vigne et du VinBlanquefortFrance

Personalised recommendations