Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9806–9816 | Cite as

Monitoring key organic indoor pollutants and their elimination in a biotrickling biofilter

Research Article
  • 99 Downloads

Abstract

A biotrickling filter was evaluated to treat the air of the interior of a bioprocess research laboratory. Initially, various solid-phase microextraction (SPME) fibers were used to identify and quantify the volatile organic pollutants and hexane, methyl isobutyl ketone, benzene, toluene, and xylene were further selected as indicators due to their prevalence and relative abundance. The system treated organic loading rates between 0.16 mgcarbon m−3 h−1 and close to 30 mgcarbon m−3 h−1 achieving removal efficiencies (RE) over 85% during 136 operational days. Respirometry experiments demonstrated that moderate acidification (below 5.0), due to microbial activity, adversely affected biofilter performance and consequently pH control was necessary to maintain performance.

Keywords

Indoor VOCs Biotrickling filter Solid-phase microextraction SPME 

Notes

Acknowledgements

Saucedo-Lucero gratefully acknowledges his postdoctoral grant from CONACYT, Mexico.

Supplementary material

11356_2018_1274_MOESM1_ESM.docx (448 kb)
ESM 1 (DOCX 447 kb)

References

  1. Arellano-García L, Gonzáles-Sánchez A, Baquerizo G, Hernández-Jimenez S, Revah S (2010) Treatment of carbon disulfide and ethanethiol vapors in alkaline biotrickling filters using an alkaliphilic sulfo-oxidizing bacterial consortium. J Chem Technol Biotechnol 85:328–335.  https://doi.org/10.1002/jctb.2328 CrossRefGoogle Scholar
  2. Baimatova N, Kenessov B, Koziel JA, Carlsen L, Bektassov M, Demyanenko OP (2016) Simple and accurate quantification of BTEX in ambient air by SPME and GC–MS. Talanta 154:46–52.  https://doi.org/10.1016/j.talanta.2016.03.050 CrossRefGoogle Scholar
  3. Bentayeb M, Billionneta C, Baiza N, Derbezc M, Kirchnerc S, Annesi-Maesano I (2013) Higher prevalence of breathlessness in elderly exposed to indoor aldehydes and VOCs in a representative sample of French dwellings. Respir Med 107:1598–1607.  https://doi.org/10.1016/j.rmed.2013.07.015 CrossRefGoogle Scholar
  4. Chan WC, Peng KH (2008) Biofiltration of ketone compounds by a composite bead biofilter. Bioresour Technol 99:3029–3035.  https://doi.org/10.1016/j.biortech.2007.06.014 CrossRefGoogle Scholar
  5. Cincinelli A, Martellini T, Amore A, Dei L, Marrazza G, Carretti E, Belosi F, Ravegnani F, Leva P (2016) Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy). Sci Total Environ 572:333–339.  https://doi.org/10.1016/j.scitotenv.2016.07.201 CrossRefGoogle Scholar
  6. Curran K, Underhill M, Gibson LT, Strlic M (2016) The development of a SPME-GC/MS method for the analysis of VOC emissions from historic plastic and rubber materials. Microchem J 124:909–918.  https://doi.org/10.1016/j.microc.2015.08.027 CrossRefGoogle Scholar
  7. Davoli E, Gangai ML, Morselli L, Tonelli D (2003) Characterization of odorants emissions from landfills by SPME and GC/MS. Chemosphere 51:357–368.  https://doi.org/10.1016/S0045-6535(02)00845-7 CrossRefGoogle Scholar
  8. Elke K, Jermann E, Begerow J, Dunemann L (1998) Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high resolution gas chromatography–flame ionization detection. J Chromatogr A 826:191–200.  https://doi.org/10.1016/S0021-9673(98)00736-5 CrossRefGoogle Scholar
  9. Estrada JM, Hernández S, Muñoz R, Revah S (2013) A comparative study of fungal and bacterial biofiltration treating a VOC mixture. J Hazard Mater 250–251:190–197.  https://doi.org/10.1016/j.jhazmat.2013.01.064 CrossRefGoogle Scholar
  10. Ferdowsi M, Ramirez AA, Jones JP, Heitz M (2017) Elimination of mass transfer and kinetic limited organic pollutants in biofilters: a review. Int Biodeterior Biodegrad 119:336–348.  https://doi.org/10.1016/j.ibiod.2016.10.015 CrossRefGoogle Scholar
  11. Fulazzaky MA, Talaiekhozanic A, Majid MZA (2016) Formaldehyde removal mechanisms in a biotrickling filter reactor. Ecol Eng 90:77–81.  https://doi.org/10.1016/j.ecoleng.2016.01.064 CrossRefGoogle Scholar
  12. Gallastegui G, Ávalos Ramirez A, Elías A, Jones JP, Heitz M (2011) Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material. Bioresour Technol 102:657–7665.  https://doi.org/10.1016/j.biortech.2011.05.054 CrossRefGoogle Scholar
  13. Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26:398–410.  https://doi.org/10.1016/j.biotechadv.2008.03.005 CrossRefGoogle Scholar
  14. Hippelein M (2006) Analysing selected VVOCs in indoor air with solid phase microextraction (SPME): a case study. Chemosphere 65:271–277.  https://doi.org/10.1016/j.chemosphere.2006.02.041 CrossRefGoogle Scholar
  15. Hort C, Platel V, Sochard S, Luengas Munoz AT, Ondarts M, Reguer A, Barona A, Elias A (2014) A hybrid biological process of indoor air treatment for toluene removal. J Air Waste Manage Assoc 64:1403–1409.  https://doi.org/10.1080/10962247.2014.958622 CrossRefGoogle Scholar
  16. Hussam A, Alauddin M, Khan AH, Chowdhury D, Bibi H, Bhattacharjee M, Sultana S (2002) Solid phase microextraction: measurement of volatile organic compounds (vocs) in Dhaka City air pollution. J Environ Sci Health A 37:1223–1239.  https://doi.org/10.1081/ESE-120005982 CrossRefGoogle Scholar
  17. Isidorov VA, Vinogorova VT (2005) Experimental determination and calculation of distribution coefficients between air and fiber with polydimethylsiloxane coating for some groups of organic compounds. J Chromatogr A 1077:195–201.  https://doi.org/10.1016/j.chroma.2005.04.028 CrossRefGoogle Scholar
  18. Istrate MA, Catalina T, Cucos A, Dicu T (2016) Experimental measurements of VOC and Radon in two Romanian classrooms. Energy Procedia 85:288–294.  https://doi.org/10.1016/j.egypro.2015.12.254 CrossRefGoogle Scholar
  19. Jaimes-Palomera M, Retama A, Elias-Castro G, Neria-Hernández A, Rivera-Hernandez O, Velasco E (2016) Non-methane hydrocarbons in the atmosphere of Mexico City: results of the 2012 ozone-season campaign. Atmos Environ 132:258–275.  https://doi.org/10.1016/j.atmosenv.2016.02.047 CrossRefGoogle Scholar
  20. Jia C, Batterman SA, Relye GE (2012) Variability of indoor and outdoor VOC measurements: an analysis using variance components. Environ Pollut 169:152–159.  https://doi.org/10.1016/j.envpol.2011.09.024 CrossRefGoogle Scholar
  21. Kiurski JS, Marić BB, Aksentijević SM, Oros IB, Kecić VS, Kovacˇević ML (2013) Indoor air quality investigation from screen printing industry. Renew Sust Energ Rev 28:224–231.  https://doi.org/10.1016/j.rser.2013.07.039 CrossRefGoogle Scholar
  22. Koziel J, Jia M, Pawliszyn J (2000) Air sampling with porous solid-phase microextraction fibers. Anal Chem 72:5178–5186.  https://doi.org/10.1021/ac000518l CrossRefGoogle Scholar
  23. Lu C, Lin MR, Chun (2002) Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal. Adv Environ Res 6:99–106.  https://doi.org/10.1016/S1093-0191(00)00072-1 CrossRefGoogle Scholar
  24. Lu Y, Liu J, Lu B, Jiang A, Wan C (2010) Study on the removal of indoor VOCs using biotechnology. J Hazard Mater 182:204–209.  https://doi.org/10.1016/j.jhazmat.2010.06.016 CrossRefGoogle Scholar
  25. Lu N, Pei J, Zhao Y, Qi R, Liu J (2012) Performance of a biological degradation method for indoor formaldehyde removal. Build Environ 57:253–258.  https://doi.org/10.1016/j.buildenv.2012.05.007 CrossRefGoogle Scholar
  26. Maisey SJ, Saunders SM, West N, Franklin PJ (2013) An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia. Atmos Environ 81:546–553.  https://doi.org/10.1016/j.atmosenv.2013.09.008 CrossRefGoogle Scholar
  27. Nicolle J, Desauziers V, Mocho P, Ramalho O (2009) Optimization of FLEC®-SPME for field passive sampling of VOCs emitted from solid building materials. Talanta 80:730–737.  https://doi.org/10.1016/j.talanta.2009.07.063 CrossRefGoogle Scholar
  28. Ondarts M, Hort C, Sochard S, Platel V, Moynault L, Seby F (2012) Evaluation of compost and a mixture of compost and activated carbon as biofilter media for the treatment of indoor air pollution. Environ Technol 3:273–284.  https://doi.org/10.1080/09593330.2011.570793 CrossRefGoogle Scholar
  29. Ouyang G, Pawliszyn J (2006) Recent developments in SPME for on-site analysis and monitoring. Trends Anal Chem 7:692–703.  https://doi.org/10.1016/j.trac.2006.05.005 CrossRefGoogle Scholar
  30. Ouyang G, Pawliszyn J (2008) A critical review in calibration methods for solid-phase microextraction. Anal Chim Acta 627:184–197.  https://doi.org/10.1016/j.aca.2008.08.015 CrossRefGoogle Scholar
  31. Parra MA, Elustondo D, Bermejo R, Santamaria JM (2008) Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafes in Pamplona, Spain. Atmos Environ 42:6647–6654.  https://doi.org/10.1016/j.atmosenv.2008.04.026 CrossRefGoogle Scholar
  32. Pitalúa-Díaz N, Herrera-López EJ, Velázquez Contreras LE, Álvarez Chávez CR, Munguia Vega N (2013) Controlling indoor benzene concentrations using a fuzzy system. IFAC P 46:449–454.  https://doi.org/10.3182/20130825-4-US-2038.00075 Google Scholar
  33. Revah S, Morgan Sagastume JM (2005) Methods for odor and VOC control. In: Shareefdeen Z, Singh A (eds) Biotechnology for odour and air pollution. Springer-Verlag, Heidelberg, Germany, pp 29–64CrossRefGoogle Scholar
  34. Saucedo-Lucero JO, Marcos R, Salvador M, Arriaga S, Muñoz R, Quijano G (2014a) Treatment of O2-free toluene emissions by anoxic biotrickling filtration. Chemosphere 117:774–780.  https://doi.org/10.1016/j.chemosphere.2014.10.041 CrossRefGoogle Scholar
  35. Saucedo-Lucero JO, Quijano G, Arriaga S, Munoz R (2014b) Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit. J Hazard Mater 276:287–294.  https://doi.org/10.1016/j.jhazmat.2014.05.040 CrossRefGoogle Scholar
  36. Soreanu G, Dixon M, Darlington A (2013) Botanical biofiltration of indoor gaseous pollutants – a mini-review. Chem Eng J 229:585–594.  https://doi.org/10.1016/j.cej.2013.06.074 CrossRefGoogle Scholar
  37. Tassi F, Capecchiacci F, Buccianti A, Vaselli O (2012) Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: a comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods. Appl Geochem 27:115–123.  https://doi.org/10.1016/j.apgeochem.2011.09.023 CrossRefGoogle Scholar
  38. Uchiyama S, Tomizawa T, Tokoro A, Aoki M, Hishiki M, Yamada T, Tanaka R, Sakamoto H, Yoshida T, Bekki K, Inaba Y, Nakagome H, Kunugita N (2015) Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Environ Res 137:364–372.  https://doi.org/10.1016/j.envres.2014.12.005 CrossRefGoogle Scholar
  39. Xu J, Szyszkowicz M, Jovic B, Cakmak S, Austin CC, Zhu J (2016) Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada. Atmos Environ 141:523–531.  https://doi.org/10.1016/j.atmosenv.2016.07.031 CrossRefGoogle Scholar
  40. Zhao W, Dai J, Liu F, Bao J, Wang Y, Yang Y, Zhao D (2012) Photocatalytic oxidation of indoor toluene: process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation. Sci Total Environ 438:201–209.  https://doi.org/10.1016/j.scitotenv.2012.08.081 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Procesos y TecnologíaUniversidad Autónoma Metropolitana- CuajimalpaMexico CityMexico
  2. 2.Departamento de Investigación Posgrado y Capacitación, CIATEC, Centro de Innovación Aplicada en Tecnologías CompetitivasLeonMexico

Personalised recommendations