Advertisement

Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture

  • Tao Meng
  • Mao-Xu ZhuEmail author
  • Wei-Wei Ma
  • Zai-Xin Gan
Research Article
  • 68 Downloads

Abstract

Dissolved sulfide, iron (Fe), and phosphorus (P) in a mudflat (Jiaozhou Bay, China) impacted by shellfish aquaculture were measured in situ by the diffusive gradients in thin films (DGT) technique. A combination of porewater and solid-phase chemistry was used to characterize the interplays of Fe and S, and their control on P mobilization. Below the subsurface layer, two times higher fluxes (FDGT) of dissolved Fe2+ from porewater to the DGT device than those of dissolved sulfide indicate that dissimilatory iron reduction (DIR) dominates over sulfate reduction (SR). Spatial coupling of dissolved Fe2+ and P points to P release driven mainly by reductive dissolution of Fe. Much higher FDGT values of dissolved Fe2+ relative to dissolved P imply that oxidative regeneration of Fe oxides at the sediment–water interfaces (SWIs) of the transitional mudflat serves as an effective “iron curtain” of upward diffusing P. In the mudflat sediments of DIR prevalence, the accumulation of total reduced inorganic sulfur (TRIS) is dampened, which can largely ascribed to enhanced oxidative loss of sulfide and/or limited availability of degradable organic carbon in the dynamic regimes. Low dissolved sulfide concentrations in the sediments leave the majority of reactive Fe unsulfidized and thus abundantly available to buffer newly produced sulfide.

Keywords

DGT technique Buffering capacity Sulfide toxicity Iron reduction Phosphorus mobilization Biogeochemical cycling 

Notes

Funding information

The research was jointly supported by the National Key Research and Development Program of China (grant 2016YFA0601301), the National Natural Science Foundation of China (grants 41576078 and 41776085), and the Shandong Province Natural Science Foundation, China (grant ZR2015DM006).

References

  1. Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345CrossRefGoogle Scholar
  2. Aller RC (2014) Sedimentary diagenesis, depositional environments, and benthic fluxes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 293–334CrossRefGoogle Scholar
  3. Aller RC, Heilbrun C, Panzeca C, Zhu ZB, Baltzer F (2004) Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon–Guianas mobile mud belt: coastal French Guiana. Mar Geol 208:331–360CrossRefGoogle Scholar
  4. Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dynam 59:351–370CrossRefGoogle Scholar
  5. Álvarez-Iglesias P, Rubio B (2012) Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuar Coast Shelf Sci 100:113–123CrossRefGoogle Scholar
  6. Azzoni R, Giordani G, Viaroli P (2005) Iron-sulphur-phosphorus interactions: implications for sediment buffering capacity in a Mediterranean eutrophic lagoon (Sacca di Goro, Italy). Hydrobiologia 550:131–148CrossRefGoogle Scholar
  7. Bebie J, Schoonemn MAA, Uhrmanannd F, Strongin DR (1998) Surface charge development on transition meal sulfides: an electrokinetic study. Geochim Cosmochim Acta 62:633–642CrossRefGoogle Scholar
  8. Berner RA, Raiswell R (1984) C/S method for distinguishing fresh-water from marine sedimentary rocks. Geology 12:365–368CrossRefGoogle Scholar
  9. Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49:2236–2241CrossRefGoogle Scholar
  10. Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288:575–603CrossRefGoogle Scholar
  11. Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, PrincetonGoogle Scholar
  12. Burton ED, Sullivan LA, Bush RT, Johnston SG, Keene AF (2008) A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Appl Geochem 23:2759–2766CrossRefGoogle Scholar
  13. Burton ED, Bush RT, Johnston SG, Sullivan LA, Keene AF (2011) Sulfur biogeochemical cycling and novel Fe-S mineralization pathways in a tidally re-flooded wetland. Geochim Cosmochim Acta 75:3434–3451Google Scholar
  14. Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632CrossRefGoogle Scholar
  15. Canfield DE, Raiswell R, Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292:659–683Google Scholar
  16. Carlsson MS, Holmer M, Petersen JK (2009) Seasonal and spatial variations of benthic impacts of mussel longline farming in a eutrophic Danish Fjord, Limfjorden. J Shellfish Res 28:791–801CrossRefGoogle Scholar
  17. Cesbron F, Metzger E, Launeau P, Deflandre B, Delgard M-L, Thibault de Chanvalon A, Geslin E, Anschutz P, Jézéquel D (2014) Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods. Environ Sci Technol 48:2816–2826CrossRefGoogle Scholar
  18. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  19. Cornwell JC, Morse JW (1987) The characterization of iron sulfide minerals in anoxic sediments. Mar Chem 22:193–206CrossRefGoogle Scholar
  20. Dai J, Song J, Li X, Yuan H, Li N, Zheng G (2007) Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environ Pollut 145:656–667CrossRefGoogle Scholar
  21. Ding S, Sun Q, Xu D, Jia F, He X, Zhang C (2012) High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: the first observation of their simultaneous release in sediments. Environ Sci Technol 46:8297–8304CrossRefGoogle Scholar
  22. Ding S, Wang Y, Wang D, Li YY, Gong M, Zhang C (2016) In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments. Sci Rep 6:24341  https://doi.org/10.1038/srep24341 CrossRefGoogle Scholar
  23. Giordani G, Azzoni R, Viaroli P (2008) A rapid assessment of the sedimentary buffering capacity towards free sulphides. Hydrobiologia 611:55–66CrossRefGoogle Scholar
  24. Gunnars A, Blomqvist S, Johansson P, Andersson C (2002) Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim Cosmochim Acta 66:745–758CrossRefGoogle Scholar
  25. Han DY, Chen Y, Zhang CL, Ren Y, Xue Y, Wan R (2017) Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem. Ecol Model 359:193–200CrossRefGoogle Scholar
  26. Harper MP, Davison W, Zhang H, Tych W (1998) Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim Cosmochim Acta 62:2757–2770CrossRefGoogle Scholar
  27. Hyun J-H, Kim S-H, Mok J-S, Lee J-S, An S-U, Lee W-C, Jung R-H (2013) Impacts of long-line aquaculture of Pacific oysters (Crassostrea gigas) on sulfate reduction and diffusive nutrient flux in the coastal sediments of Jinhae-Tongyeong, Korea. Mar Pollut Bull 74:187–198CrossRefGoogle Scholar
  28. Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and PH in their surface sediment. Ocean Dynam 59:317–332CrossRefGoogle Scholar
  29. Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanol 22:814–832CrossRefGoogle Scholar
  30. Jørgensen BB, Bang M, Blackburn TH (1990) Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar Ecol Prog Ser 59:39–54CrossRefGoogle Scholar
  31. Kodama K, Waku M, Sone R, Miyawaki D, Ishida T, Akatsuka T, Horiguchi T (2018) Ontogenetic and temperature-dependent changes in tolerance to hypoxia and hydrogen sulfide during the early life stages of the Manila clam Ruditapes philippinarum. Mar Environ Res 137:177–187CrossRefGoogle Scholar
  32. Kraal P, Burton ED, Rose AL, Cheetham MD, Bush RT, Sullivan LA (2013) Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary. Environ Sci Technol 47:3114–3121CrossRefGoogle Scholar
  33. Lehtoranta J, Ekholm P, Heikki P (2008) Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea sub-basins. J Mar Syst 74:495–504CrossRefGoogle Scholar
  34. Lehtoranta J, Ekholm P, Heikki P (2009) Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio 38:303–308CrossRefGoogle Scholar
  35. Liu SM, Zhu BD, Zhang J, Wu Y, Liu GS, Deng B, Zhao MX, Liu GQ, Du JZ, Ren JL, Zhang GL (2010) Environmental change in Jiaozhou bay recorded by nutrient components in sediments. Mar Pollut Bull 60:1591–1599CrossRefGoogle Scholar
  36. Liu J, Zhu M-X, Yang G-P, Shi X-N, Yang R-J (2014) Quick sulfide buffering in inner shelf sediments of the East China Sea impacted by eutrophication. Environ Earth Sci 71:465–473CrossRefGoogle Scholar
  37. Luther GW (1991) Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta 55:2839–2849CrossRefGoogle Scholar
  38. Ma W-W, Zhu M-X, Yang G-P, Li T (2017) In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction. Mar Pollut Bull 124:400–410CrossRefGoogle Scholar
  39. Morse JW (1991) Oxidation kinetics of sedimentary pyrite in seawater. Geochim Cosmochim Acta 55:3665–3667CrossRefGoogle Scholar
  40. Morse JW, Thomson H, Finneran DW (2007) Factors controlling sulfide geochemistry in sub-tropical estuarine and bay sediments. Aquat Geochem 13:143–156CrossRefGoogle Scholar
  41. Mucci A, Richard L, Lucotte M, Guignard C (2000) The differential geochemical behavior of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord Estuary, Canada. Aquat Geochem 6:293–324CrossRefGoogle Scholar
  42. Otero XL, Calvo de Anta RM, Macías F (2006) Sulphur partitioning in sediments and biodeposits below mussel rafts in the Ria de Arousa (Galicia, NW Spain). Mar Environ Res 61:305–325CrossRefGoogle Scholar
  43. Otero XL, Calvo de Anta RM, Macías F (2009) Iron geochemistry under mussel rafts in the Galician ria system (Galicia-NW Spain). Estuar Coast Shelf Sci 81:83–93CrossRefGoogle Scholar
  44. Pagès A, Teasdale PR, Robertson D, Bennett WW, Schäfer J, Welsh DT (2011) Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(II) and sulfide in seagrass sediment porewaters. Chemosphere 85:1256–1261CrossRefGoogle Scholar
  45. Pagès A, Welsh DT, Robertson D, Panther JG, Schäfer J, Tomlinson RB, Teasdale PR (2012) Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni. Estuar Coast Shelf Sci 115:282–290CrossRefGoogle Scholar
  46. Pagès A, Welsh DT, Peter R, Teasdale PR, Grice K, Vacher M, Bennett WW, Visscher PT (2014) Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar Chem 137:102–112CrossRefGoogle Scholar
  47. Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60:3169–3175CrossRefGoogle Scholar
  48. Poulton SW, Krom MD, Raiswell R (2004) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715Google Scholar
  49. Poulton SW, Canfield DE (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem Geol 214:209–221CrossRefGoogle Scholar
  50. Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1:1–220CrossRefGoogle Scholar
  51. Raiswell R, Canfield DE (1998) Sources of iron for pyrite formation in marine sediments. Am J Sci 298: 219–245Google Scholar
  52. Raiswell R, Canfield DE, Berner RA (1994) A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol 111:101–110CrossRefGoogle Scholar
  53. Rickard DT (1974) Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci 275:636–652CrossRefGoogle Scholar
  54. Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197CrossRefGoogle Scholar
  55. Rigaud S, Deflandre B, Maire O, Bernard G, Duchêne JC, Poirier D, Anschutz P (2018) Transient biogeochemistry in intertidal sediments: new insights from tidal pools in Zostera noltei meadows of Arcachon bay (France). Mar Chem 200:1–13CrossRefGoogle Scholar
  56. Robertson D, Teasdale PR, Welsh DT (2008) A novel gel-based technique for the high resolution, two-dimensional determination of iron (II) and sulfide in sediment. Limnol Oceanogr Methods 6:502–512CrossRefGoogle Scholar
  57. Rozan TF, Taillefert M, Trouwborst RE, Glazer BT, Ma S, Herszage J, Valdes LM, Price KS, Luther GW (2002) Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol Oceanol 47:1346–1354CrossRefGoogle Scholar
  58. Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57:991–1007CrossRefGoogle Scholar
  59. Slomp CP, van der Gaast SJ, van Raaphorst W (1996) Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar Chem 52:55–73CrossRefGoogle Scholar
  60. Soudant P, Paillard C, Choquet G, Lambert C, Reid HI, Marhic A, Donaghy L, Birkbeck TH (2004) Impact of season and rearing site on the physiological and immunological parameters of the Manila clam Venerupis (=Tapes, =Ruditapes) philippinarum. Aquaculture 229:401–418CrossRefGoogle Scholar
  61. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781CrossRefGoogle Scholar
  62. Sundby B, Anderson LG, Hall POJ, Iverfeldt A, van der Loeff MMR, Westerlund SFG (1986) The effect of oxygen on release of and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50:1281–1288CrossRefGoogle Scholar
  63. Taillefert M, Neuhuber S, Bristow G (2007) The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochem Trans 8:1–15CrossRefGoogle Scholar
  64. Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58:5115–5129CrossRefGoogle Scholar
  65. Valdemarsen T, Kristensen E, Holmer M (2009) Metabolic threshold and sulfide-buffering in diffusion controlled marine sediments impacted by continuous organic enrichment. Biogeochemistry 95:335–353CrossRefGoogle Scholar
  66. Valdemarsen T, Bannister RJ, Hansen PK, Holmer M, Ervik A (2012) Biogeochemical malfunctioning in sediments beneath a deep-water fish farm. Environ Pollut 170:15–25CrossRefGoogle Scholar
  67. Wang Y, Ding S, Gong M, Xu S, Xu W, Zhang C (2016) Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin film for measurements of cations and anions. Anal Chim Acta 945:47–56CrossRefGoogle Scholar
  68. Xu D, Chen Y, Ding S, Sun Q, Wang Y, Zhang C (2013) Diffusive gradients in thin films technique equipped with a mixed binding gel for simultaneous measurements of dissolved reactive phosphorus and dissolved iron. Environ Sci Technol 47:10477–10484Google Scholar
  69. Yang L, Wu Y, Zhang J, Liu S, Deng B (2011) Burial of terrestrial and marine organic carbon in Jiaozhou Bay: different responses to urbanization. Reg Environ Chang 11:707–714CrossRefGoogle Scholar
  70. Yang W, Chen M, Zhang F, Zhao X, Fang Z, Ma H (2016) Anthropogenic impacts on sedimentation in Jiaozhou Bay, China. J Coast Conserv 20:501–506CrossRefGoogle Scholar
  71. Yokoyama H (2003) Environmental quality criteria for fish farms in Japan. Aquaculture 226:45–56CrossRefGoogle Scholar
  72. Zhu M-X, Liu J, Yang G-P, Li T, Yang R-J (2012) Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Mar Environ Res 80:46–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations