Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29880–29888 | Cite as

Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae)

  • Boni Barthélémy YarouEmail author
  • Thomas Bawin
  • Antoine Boullis
  • Stéphanie Heukin
  • Georges Lognay
  • François Jean Verheggen
  • Frédéric Francis
Chemistry, Activity and Impact of Plant Biocontrol products


The leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is one of the most important pests of tomato, reducing crop yields by up to 100% in greenhouses and fields, in several countries globally. Because synthetic insecticides lead to resistance and have adverse effects on natural enemies and the health of producers, alternative control methods are needed. In this study, we assessed the oviposition-deterring effect of basil plants, Ocimum gratissimum L. and O. basilicum L. (Lamiaceae), using dual-choice behavioural assays performed in flight tunnels. We found that both plants significantly reduced T. absoluta oviposition behaviour on a tomato plant located nearby. To evaluate the potential effect of basil volatile organic compounds, we formulated essential oils of both plant species in paraffin oil, and observed a similar oviposition-deterring effect. Gas chromatography analyses detected 18 constituents in these essential oils which the major constituents included thymol (33.3%), p-cymene (20.4%), γ-terpinene (16.9%), myrcene (3.9%) in O. gratissimum and estragol (73.8%), linalool (8.6%), β-elemene (2.9%) and E-β-ocimene (2.6%) in O. basilicum. Twenty and 33 compounds were identified of the volatiles collected on O. gratissimum and O. basilicum plants, respectively. The main components include the following: p-cymene (33.5%), γ-terpinene (23.6%), α-terpinene (7.2%), α-thujene (6.7%) and E-α-bergamotene (38.9%) in O. gratissimum, and methyl eugenol (26.1%), E-β-ocimene (17.7%), and linalool (9.4%) in O. basilicum. Four compounds (α-pinene, β-pinene, Myrcene, Limonene) were common in essential oils and plants. Our results suggest the valuable potential of basil and associated essential oils as a component of integrated management strategies against the tomato leafminer.


O. basilicum O. gratissimum Essential oil Behaviour Oviposition Tuta absoluta Integrated management 



This research was funded by Erasmus Mundus program. Tuta absoluta facilities were funded by the Service Public de Wallonie (SPW–DGO3. D31-1344). The authors thank Frédéric Dresen for technical support in tomato plant cultures and insect rearing; Danny Trisman and Franck Michels for technical support in GC-MS analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–574CrossRefGoogle Scholar
  2. Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, Chermiti B, Zappalà L (2015) Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLoS ONE 10(9):e0138411. doi: 10.1371/journal.pone.0138411 CrossRefGoogle Scholar
  3. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed., Carol Stream Allured Publishing Corporation, p 804Google Scholar
  4. Adeniyi SA, Orjiekwe CL, Ehiagbonare JE, Arimah BD (2010) Preliminary phytochemical analysis and insecticidal activity of ethanolic extracts of four tropical plants (Vernonia amygdalina, Sida acuta, Ocimum gratissimum and Telfaria occidentalis) against beans weevil (Acanthscelides obtectus). Int J Phys Sci 5:753–762Google Scholar
  5. Akono Ntonga P, Baldovini N, Mouray E, Mambu L, Belong P, Grellier P (2014) Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. Parasite 21:33. doi: 10.1051/parasite/2014033 CrossRefGoogle Scholar
  6. Arnó J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520CrossRefGoogle Scholar
  7. Asawalam E, Emosairue S, Hassanali A (2008) Essential oil of Ocimum grattissimum (Labiatae) as Sitophilus zeamais (Coleoptera: Curculionidae) protectant. Afr J Biotechnol 7:3771–3776Google Scholar
  8. Babushok VI, Linstrom PJ, Zenkevich IG (2011) Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data 40:47. doi: 10.1063/1.3653552 CrossRefGoogle Scholar
  9. Bawin T, Dujeu D, De Backer L, Fauconnier M-L, Lognay G, Delaplace P, Francis F, Verheggen FJ (2015a) Could alternative solanaceous hosts act as refuges for the tomato leafminer, Tuta absoluta. Arthropod Plant Interact 9:425–435CrossRefGoogle Scholar
  10. Bawin T, Dujeu D, De Backer L, Francis F, Verheggen FJ (2015b) Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can Entomol 0:1–9Google Scholar
  11. Beizhou S, Jie Z, Jinghui H, Hongying W, Yun K, Yuncong Y (2011) Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag Sci 67:1107–1114Google Scholar
  12. Belong P, Ntonga PA, Fils E-MB, Dadji GAF, Tamesse JL (2013) Chemical composition and residue activities of Ocimum canum Sims and Ocimum basilicum L essential oils on adult female Anopheles funestus ss. J Anim Plant Sci 19:2854–2863Google Scholar
  13. Ben Khedher S, Boukedi H, Kilani-Feki O, Chaib I, Laarif A, Abdelkefi-Mesrati L, Tounsi S (2015) Bacillus amyloliquefaciens AG1 biosurfactant: putative receptor diversity and histopathological effects on Tuta absoluta midgut. J Invertebr Pathol 132:42–47CrossRefGoogle Scholar
  14. Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S, Hajra S (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn—a review. Int J Curr Res Rev 2:73–83Google Scholar
  15. Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects. PLoS One 8:e76548CrossRefGoogle Scholar
  16. Brévault T, Sylla S, Diatte M, Bernadas G, Diarra K (2014) Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): a new threat to tomato production in Sub-Saharan Africa. Afr Entomol 22:441–444CrossRefGoogle Scholar
  17. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611CrossRefGoogle Scholar
  18. Bruce TJ, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B, Prosser I, Smart LE, Wadhams LJ (2005) Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag Sci 61:1115–1121CrossRefGoogle Scholar
  19. Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HAA (2015) Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Pest Sci 88:405–412CrossRefGoogle Scholar
  20. Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90:787–796CrossRefGoogle Scholar
  21. Caparros Megido R, De Backer L, Ettaïb R, Brostaux Y, Fauconnier M-L, Delaplace P, Lognay G, Belkadhi MS, Haubruge E, Francis F, Verheggen FJ (2014) Role of larval host plant experience and solanaceous plant volatile emissions in Tuta absoluta (Lepidoptera: Gelechiidae) host finding behavior. Arthropod Plant Interact 8:293–304Google Scholar
  22. Chailleux A, Desneux N, Seguret J, Do H, Khanh T, Maignet P, Tabone E (2012) Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. PLoS Genet 7:e48068CrossRefGoogle Scholar
  23. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, Desneux N (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541CrossRefGoogle Scholar
  24. Chaubey MK (2012) Acute, lethal and synergistic effects of some terpenes against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ecol Balk 4:53–62Google Scholar
  25. Cocco A, Deliperi S, Delrio G (2013) Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J Appl Entomol 137:16–28CrossRefGoogle Scholar
  26. da Silva Galdino TV, Picanço MC, de Morais EGF, Silva NR, da Silva GAR, Lopes MC (2011) Bioassay method for toxicity studies of insecticide formulations to Tuta absoluta (Meyrick, 1917). Ciênc Agrotecnol 35:869–877CrossRefGoogle Scholar
  27. De Backer L, Caparros Megido R, Fauconnier M-L, Brostaux Y, Francis F, Verheggen F (2015) Tuta absoluta-induced plant volatiles: attractiveness towards the generalist predator Macrolophus pygmaeus. Arthropod Plant Interact 9:465–476CrossRefGoogle Scholar
  28. De Backer L, Bawin T, Schott M, Gillard L, Markó IE, Francis F, Verheggen F (2016) Betraying its presence: identification of the chemical signal released by Tuta absoluta-infested tomato plants that guide generalist predators toward their prey. Arthropod Plant Interact. doi: 10.1007/s11829-016-9471-7 CrossRefGoogle Scholar
  29. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  30. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Catalán Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  31. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  32. Fayalo GD, Sokenou HFD, Aboudou M, Alavo TBC (2014) Effet de l’huile de colza sur les populations du puceron Aphis gossypii pour la protection du cotonnier. Int J Biol Chem Sci 8:2508–2515CrossRefGoogle Scholar
  33. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M, Tavella L, Alma A (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J Econ Entomol 105:1311–1319CrossRefGoogle Scholar
  34. Ferrarini SR, Duarte MO, da Rosa RG, Rolim V, Eifler-Lima VL, von Poser G, Ribeiro VLS (2008) Acaricidal activity of limonene, limonene oxide and β-amino alcohol derivatives on Rhipicephalus (Boophilus) microplus. Vet Parasitol 157:149–153CrossRefGoogle Scholar
  35. Filho MM, Vilela EF, Attygalle AB, Meinwald J, Svatoš A, Jham GN (2000) Filed trapping of tomato moth, Tuta absoluta with pheromone traps. J Chem Ecol 26:875–881CrossRefGoogle Scholar
  36. González-Cabrera J, Mollá O, Montón H, Urbaneja A (2011) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56:71–80CrossRefGoogle Scholar
  37. Ilboudo Z, Dabiré LCBCB, Nébié RCHCH, Dicko IOO, Dugravot S, Cortesero AMM, Sanon A (2010) Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 46:124–128CrossRefGoogle Scholar
  38. Jaworski CC, Chailleux A, Bearez P, Desneux N (2015) Predator-mediated apparent competition between pests fails to prevent yield loss despite actual pest populations decrease. J Pest Sci 88:793–803CrossRefGoogle Scholar
  39. Kazembe T, Chauruka D (2012) Mosquito repellence of Astrolochii hepii, Cymbopogon citratus and Ocimum gratissimum extracts and mixtures. Bull Environ Pharmacol Life Sci 1:60–64Google Scholar
  40. Kiradoo MM, Srivastava M (2010) A comparative study on the efficacy of two Lamiaceae plants on egg-laying performance by the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae). J Biopestic 3:590–595Google Scholar
  41. Koubala BB, Miafo AT, Bouba D (2013) Evaluation of insecticide properties of ethanolic extract from Balanites aegyptiaca, Melia azedarach and Ocimum gratissimum leaves on Callosobruchus maculatus (Coleptera: Bruchidae). Asian J Agric Sci 5:93–101Google Scholar
  42. Kpadonou Kpoviessi BGH, Ladekan EY, Kpoviessi DSS, Gbaguidi F, Yehouenou B, Quetin-Leclercq J, Figueredo G, Moudachirou M, Accrombessi GC (2012) Chemical variation of essential oil constituents of Ocimum gratissimum L. from Benin, and impact on antimicrobial properties and toxicity against Artemia salina leach. Chem Biodivers 9:139–150CrossRefGoogle Scholar
  43. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119CrossRefGoogle Scholar
  44. Liu XC, Liu QZ, Shi WP, Liu ZL (2014) Evaluation of insecticidal activity of the essential oil of Eucalyptus robusta Smith leaves and its constituent compound against overwintering Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae). J Entomol Zool Stud 2:27–31Google Scholar
  45. Medeiros MA, Sujii ER, Morais HC (2009) Effect of plant diversification on abundance of South American tomato pinworm and predators in two cropping systems. Hortic Bras 27:300–306CrossRefGoogle Scholar
  46. Ogendo JO, Kostyukovsky M, Ravid U, Matasyoh JC, Deng AL, Omolo EO, Kariuki ST, Shaaya E (2008) Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products. J Stored Prod Res 44:328–334CrossRefGoogle Scholar
  47. Öztemiz S (2013) Population of Tuta absoluta and natural enemies after releasing on tomato grown greenhouse in Turkey. Afr J Biotechnol 12:1882–1887CrossRefGoogle Scholar
  48. Pherobase (2016) The Pherobase: Database of pheromones and semiochemicals [WWW Document]. URL
  49. Prabhu KS, Lobo R, Shirwaikar AA, Shirwaikar A (2009) Ocimum gratissimum: a review of its chemical, pharmacological and ethnomedicinal properties. Open Complement Med J 1:1–15CrossRefGoogle Scholar
  50. Proffit M, Birgersson G, Bengtsson M, Reis R, Witzgall P, Lima E (2011) Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565–574CrossRefGoogle Scholar
  51. Ramaswamy SB (1988) Host finding by moths: sensory modalities and behaviours. J Insect Physiol 34:235–249CrossRefGoogle Scholar
  52. Regnault-Roger C, Hamraoui A (1995) Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.) J Stored Prod Res 31:291–299CrossRefGoogle Scholar
  53. Roditakis E, Skarmoutsou C, Staurakaki M (2013) Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Manag Sci 69:834–840CrossRefGoogle Scholar
  54. Runyoro D, Ngassapa O, Vagionas K (2010) Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem 119:311–316CrossRefGoogle Scholar
  55. Salehi Z, Yarahmadi F, Rasekh A, Sohani NZ (2016) Functional responses of Orius albidipennis Reuter (Hemiptera, Anthocoridae) to Tuta absoluta Meyrick (Lepidoptera, Gelechiidae) on two tomato cultivars with different leaf morphological characteristics. Entomol Gen 36:127–136CrossRefGoogle Scholar
  56. Selvakkumar C, Gayathri B, Vinaykumar KS, Lakshmi BS, Balakrishnan A (2007) Potential anti-inflammatory properties of crude alcoholic extract of Ocimum basilicum L. in human peripheral blood mononuclear cells. J Heal Sci 53:500–505CrossRefGoogle Scholar
  57. Shadia E, Abd E, Elsayed AO, Aly SS (2007) Chemical composition of Ocimum americanum essential oil and its biological effects against, Agrotis ipsilon, (Lepidoptera: Noctuidae). Res J Agric Biol Sci 3:740–747Google Scholar
  58. Sharaby A, Abdel-Rahman H, Moawad S (2009) Biological effects of some natural and chemical compounds on the potato tuber moth, Phthorimaea operculella Zell. (Lepidoptera:Gelechiidae). Saudi J Biol Sci 16:1–9CrossRefGoogle Scholar
  59. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  60. Sohrabi F, Nooryazdan H, Gharati B, Saeidi Z (2016) Evaluation of ten tomato cultivars for resistance against tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under field infestation conditions. Entomol Gen 36:163–175CrossRefGoogle Scholar
  61. Solé J, Sans A, Riba M, Guerrero A (2010) Behavioural and electrophysiological responses of the European corn borer Ostrinia nubilalis to host-plant volatiles and related chemicals. Physiol Entomol 35:354–363CrossRefGoogle Scholar
  62. Song B, Tang G, Sang X, Zhang J, Yao Y, Wiggins N (2013) Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator–prey abundances. Biocontrol Sci Tech 23:381–395CrossRefGoogle Scholar
  63. Tonnang HEZ, Mohamed SF, Khamis F, Ekesi S (2015) Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: implications for phytosanitary measures and management. PLoS One 10:e0135283CrossRefGoogle Scholar
  64. Urbaneja A, Desneux N, Gabarra R, Arno J, González-Cabrera J, Mafra-Neto A, Pinto A, Parra J (2013) Biology, ecology and management of the tomato borer, Tuta absoluta. In: Peña JE (ed) Potential Invasive Pests of Agricultural Crops. p 98–125Google Scholar
  65. Vacas S, Alfaro C, Primo J, Navarro-Llopis V (2011) Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Manag Sci 67:1473–1480CrossRefGoogle Scholar
  66. Valchev N, Yankova V, Markova D (2013) Biological activity of plant protection products against Tuta absoluta (Meyrick) in tomato grown in greenhouses. Agric Sci Technol 5:318–321Google Scholar
  67. Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457CrossRefGoogle Scholar
  68. Zhang Z, Sun X, Xin Z, Luo Z, Gao Y, Bian L, Chen Z (2013) Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua. J Chem Ecol 39:1284–1296CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Boni Barthélémy Yarou
    • 1
    Email author
  • Thomas Bawin
    • 1
  • Antoine Boullis
    • 1
  • Stéphanie Heukin
    • 2
  • Georges Lognay
    • 2
  • François Jean Verheggen
    • 1
  • Frédéric Francis
    • 1
  1. 1.Functional and Evolutionary Entomology, Agro Biochem Department, Gembloux Agro-bio TechUniversity of Liege (ULg)GemblouxBelgium
  2. 2.Analytical Chemistry, Agro Biochem Department, Gembloux Agro-bio TechUniversity of Liege (ULg)GemblouxBelgium

Personalised recommendations