Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29860–29867 | Cite as

Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect

  • Wessal Ouedrhiri
  • Mounyr Balouiri
  • Samira Bouhdid
  • El Houssaine Harki
  • Sandrine Moja
  • Hassane GrecheEmail author
Chemistry, Activity and Impact of Plant Biocontrol products


In this work, the chemical composition, the antioxidant, and the antibacterial activities of two Moroccan essential oils less studied, extracted from Pelargonium asperum and Ormenis mixta, were investigated. According to the gas chromatography coupled to mass spectrometry analysis, citronellol (25.07%), citronellyl ester (10.52%), geraniol (10.46%), and buthyl anthranilate (5.93%) were found to be the major components of P. asperum, while O. mixta was mainly composed of D-germacrene (11.46%), 1,8-cineole (10.28%), and cis-methyl isoeugenol (9.04%). Moreover, O. mixta essential oil exhibited an important antioxidant activity being significantly higher than that exhibited by P. asperum oil (P < 0.001). As regards the antimicrobial activity of both essential oils, the zones of growth inhibition and the minimum inhibitory concentration values showed that P. asperum essential oil was more active than that of O. mixta. Thereafter, the impact of the binary combination of essential oils on their antimicrobial effect was investigated against Staphylococcus aureus using the fractional inhibitory concentration index calculation. The results showed a promising synergistic antibacterial interaction between essential oils studied.


Essential oil Antibacterial activity Antioxidant activity Pelargonium asperum Ormenis mixta Combination 



The authors declare that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.


  1. Aazza S, Lyoussi B, Miguel MG (2011) Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16:7672–7690. doi: 10.3390/molecules16097672 CrossRefGoogle Scholar
  2. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream, p 804Google Scholar
  3. Adelakun OE, Oyelade OJ, Olanipekun BF (2016) Essential oils in food preservation, flavor and safety, essential oils in food preservation, flavor and safety. Elsevier, London. doi: 10.1016/B978-0-12-416641-7.00007-9 CrossRefGoogle Scholar
  4. Avila-Sosa R, Palou E, López-Malo A (2016) Essential oils added to edible films. In: Preedy VR (ed) Essential oils in food preservation, Flavor and Safety. Elsevier, London, pp 149–154. doi: 10.1016/B978-0-12-416641-7.00015-8 CrossRefGoogle Scholar
  5. Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006. doi: 10.3390/molecules17043989 CrossRefGoogle Scholar
  6. Bassolé IHN, Lamien-Meda A, Bayala B, Tirogo S, Franz C, Novak J, Nebié RC, Dicko MH (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L and Ocimum basilicum L essential oils and their major monoterpene alcohols alone and in combination. Molecules 15:7825–7839. doi: 10.3390/molecules15117825 CrossRefGoogle Scholar
  7. Belhattab R, Amor L, Barroso JG, Pedro LG, Cristina Figueiredo A (2012) Essential oil from Artemisia herba-alba Asso grown wild in Algeria: variability assessment and comparison with an updated literature survey. Arab J Chem 7:243–251. doi: 10.1016/j.arabjc.2012.04.042 CrossRefGoogle Scholar
  8. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022 CrossRefGoogle Scholar
  9. Chivandi E, Dangarembizi R, Nyakudya TT, Erlwanger KH (2016) Use of essential oils as a preservative of meat. In: Preedy VR (ed) Essential oils in food preservation, Flavor and Safety. Elsevier, London, pp 85–91. doi: 10.1016/B978-0-12-416641-7.00008-0 CrossRefGoogle Scholar
  10. Clinical and Laboratory Standards Institute (CLSI), 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. Pennsylvania 19087 USAGoogle Scholar
  11. De Bellis P, Minervini F, Di Biase M, Valerio F, Lavermicocca P, Sisto A (2015) Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients. Int J Food Microbiol 197:30–39. doi: 10.1016/j.ijfoodmicro.2014.12.017 CrossRefGoogle Scholar
  12. Deba F, Xuan TD, Yasuda M, Tawata S (2008) Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control 19:346–352. doi: 10.1016/j.foodcont.2007.04.011 CrossRefGoogle Scholar
  13. Doménech E, Jimenez-Belenguer A, Amoros JA, Ferrus MA, Escriche I (2015) Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Control 47:120–125. doi: 10.1016/j.foodcont.2014.06.043 CrossRefGoogle Scholar
  14. Elouaddari A, El Amrani A, Eddine JJ, Correia AID, Barroso JG, Pedro LG, Figueiredo AC, Cristina Figueiredo A (2013) Yield and chemical composition of the essential oil of Moroccan chamomile [Cladanthus mixtus (L.) Chevall.] growing wild at different sites in Morocco. Flavour Fragr J 28:360–366. doi: 10.1002/ffj.3146 CrossRefGoogle Scholar
  15. Fennane M, IBN Tattou M (2012) Statistiques et commentaires sur l ‘inventaire actuel de la flore vasculaire du Maroc. Bull l’Instit Sci Rabat Sect Sci Vie 34:1–9Google Scholar
  16. Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24:348–354. doi: 10.1002/ffj CrossRefGoogle Scholar
  17. Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124:91–97. doi: 10.1016/j.ijfoodmicro.2008.02.028 CrossRefGoogle Scholar
  18. Haba E, Bouhdid S, Torrego-Solana N, Marqués AM, Espuny MJ, García-Celma MJ, Manresa A (2014) Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int J Pharm 476:134–141. doi: 10.1016/j.ijpharm.2014.09.039 CrossRefGoogle Scholar
  19. Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, Krastev L, Krastanov A (2014) Chemical composition and antioxidant properties of Juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants 3:81–98. doi: 10.3390/antiox3010081 CrossRefGoogle Scholar
  20. Hsouna AB, Halima NB, Abdelkafi S, Hamdi N (2013) Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities. J Oleo Sci 980:973–980CrossRefGoogle Scholar
  21. Johnson DR, Decker E a (2014) The role of oxygen in lipid oxidation reactions: a review. Annu Rev Food Sci Technol 6:8.1–8.20. doi: 10.1146/annurev-food-022814-015532 CrossRefGoogle Scholar
  22. Kahl R, Kappus H (1993) Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch 196:329–338CrossRefGoogle Scholar
  23. Martin SJ, Pendland SL, Chen C, Schreckenberger P, Danziger LH (1996) In vitro synergy testing of macrolide-quinolone combinations against 41 clinical isolates of Legionella. Antimicrob Agents Chemother 40:1419–1421CrossRefGoogle Scholar
  24. Mighri H, Hajlaoui H, Akrout A, Najjaa H, Neffati M (2010) Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. C R Chim 13:380–386. doi: 10.1016/j.crci.2009.09.008 CrossRefGoogle Scholar
  25. Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bassami MR (2010) Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem 120:765–770. doi: 10.1016/j.foodchem.2009.11.008 CrossRefGoogle Scholar
  26. Rana IS, Rana AS, Rajak CR (2011) Evaluation of antifungal activity in essential oil of Syzygium aromaticum (L)by extraction, purification and analysis of its main component eugenol. Braz J Microbiol 42:1269–1277CrossRefGoogle Scholar
  27. Regnault-roger C (2013) Essential oils in insect control. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer, Berlin, pp 4087–4107. doi: 10.1007/978-3-642-22144-6 CrossRefGoogle Scholar
  28. Riva A, Borghi E, Cirasola D, Colmegna S, Borgo F, Amato E, Pontello MM, Morace G (2015) Methicillin-resistant Staphylococcus aureus in raw milk: prevalence, SCCmec typing, enterotoxin characterization, and antimicrobial resistance patterns. J Food Prot 78:1142–1146. doi: 10.4315/0362-028X.JFP-14-531 CrossRefGoogle Scholar
  29. Santiesteban-López A, Palou E, López-Malo A (2007) Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J Appl Microbiol 102:486–497. doi: 10.1111/j.1365-2672.2006.03092.x CrossRefGoogle Scholar
  30. Satrani B, Ghanmi M, Farah A, Aafi A, Fougrach H, Bourkhiss B, Bousta D, Talbi M (2007) Composition chimique et activité antimicrobienne de l’huile enssentielle de Cladanthus mixtus. Bull Soc Pharmacol 146:85–96Google Scholar
  31. Selim S (2011) Antimicrobial activity of essential oils against vancomycin-resistant Enterococci (vre) and Eschirichia coli O157:H7 feta soft cheese and minced beef meat. Braz J Microbiol 42:187–196CrossRefGoogle Scholar
  32. Sökmen A, Sökmen M, Daferera D, Polissiou M, Candan F, Unlü M, Akpulat HA (2004) The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res 18:451–456. doi: 10.1002/ptr.1438 CrossRefGoogle Scholar
  33. Tisserand R, Young R 2014 13- Essential oil profiles. In: Tisserand R, Young R (eds) Essential Oil Safety. Elsevier, pp. 183–482. doi: 10.1016/B978-0-443-06241-4.00013-8 CrossRefGoogle Scholar
  34. Ultee A, Slump A, Steging G, Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Prot 63:620–624CrossRefGoogle Scholar
  35. Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568. doi: 10.1128/AEM.68.4.1561-1568.2002 CrossRefGoogle Scholar
  36. Wang W, Li N, Luo M, Zu Y, Efferth T (2012) Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17:2704–2713. doi: 10.3390/molecules17032704 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wessal Ouedrhiri
    • 1
    • 2
  • Mounyr Balouiri
    • 1
    • 2
  • Samira Bouhdid
    • 1
    • 2
  • El Houssaine Harki
    • 1
    • 2
  • Sandrine Moja
    • 3
    • 4
    • 5
  • Hassane Greche
    • 1
    • 2
    Email author
  1. 1.National Agency of Medicinal and Aromatic PlantsTaounateMorocco
  2. 2.Faculty of scienceUniversity Sidi Mohamed Ben Abdellahatlas-FezMorocco
  3. 3.University of LyonLyonFrance
  4. 4.University of Saint-EtienneSaint-ÉtienneFrance
  5. 5.Laboratory of BVmapSaint-Etienne -cédex 2France

Personalised recommendations