Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29868–29879 | Cite as

One more step toward a push-pull strategy combining both a trap crop and plant volatile organic compounds against the cabbage root fly Delia radicum

  • Fabrice LamyEmail author
  • Sébastien Dugravot
  • Anne Marie Cortesero
  • Valérie Chaminade
  • Vincent Faloya
  • Denis Poinsot
Chemistry, Activity and Impact of Plant Biocontrol products


The “push-pull” strategy aims at manipulating insect pest behavior using a combination of attractive and repulsive stimuli using either plants derived volatile organic compounds or insect host plant preferences. In a field experiment using broccoli as a crop, we combined in a “push-pull” context the oviposition deterrent effect of dimethyl disulfide and the attractive effect of a Chinese cabbage strip enhanced with Z-3-hexenyl-acetate. The push component dimethyl disulfide reduced Delia radicum L. (Diptera: Anthomyiidae) oviposition on broccoli by nearly 30%, and applying Z-3-hexenyl-acetate in the pull component of Chinese cabbage increased it by 40%. Moreover, pest infestation was 40% higher in Chinese cabbage compared to broccoli and parasitism by Trybliographa rapae Westwood (Hymenoptera: Figitidae) was four times higher on this trap plant. In addition, lab experiments confirmed that Chinese cabbage is a more suitable host plant than broccoli for the cabbage root fly. Taken together, our results demonstrate the technical possibility of using a push-pull strategy to manipulate the egg-laying behavior of D. radicum in the field.


Behavioral manipulation Plant-insect interactions Volatile organic compounds Brassicaceae Delia radicum L. (Diptera: Anthomyiidae) Parasitoid 



Volatile organic compound




Dimethyl disulfide



We thank the staff of the “Domaine experimental de la Motte au Vicomte UE0787” (INRA Center, Le Rheu, France) and especially Gabriel Nedelec for his advice and help with the field experiment. The authors acknowledge Valentin Gaudu and Chloe Guyot for the precious help provided during the monitoring of the field experiment.

Author’s contribution

AMC, DP, SD, and FL conceived and designed research. VF helped designing the field experiment. DP and SD conducted laboratory experiments. FL and VC conducted field experiments. FL and DP analyzed data. FL wrote the manuscript. All authors commented and approved the manuscript.

Compliance with ethical standards


This work was financed by the project “PURE” and a grant of the French Ministry for Research (MESR) to FL.

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De Vleesschauwer D, Haesaert G, Smagghe G (2015) Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol 167:1671–1684. doi: 10.1104/pp.15.00107 CrossRefGoogle Scholar
  2. Arimura G-I, Ozawa R, Horiuchi J-I, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061. doi: 10.1016/S0305-1978(01)00049-7 CrossRefGoogle Scholar
  3. Auger J, Lecomte C, Paris J, Thibout E (1989) Identification of leek-moth and diamondback-moth frass volatiles that stimulate parasitoid, Diadromus pulchellus. J Chem Ecol 15:1391–1398. doi: 10.1007/bf01014838 CrossRefGoogle Scholar
  4. Badenes-perez FR, Shelton AM, Nault BA (2005) Using yellow rocket as a trap crop for diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 98:884–890. doi: 10.1603/0022-0493-98.3.884 CrossRefGoogle Scholar
  5. Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG (2014) Using plant chemistry and insect preference to study the potential of Barbarea (Brassicaceae) as a dead-end trap crop for diamondback moth (Lepidoptera: Plutellidae). Phytochemistry 98:137–144. doi: 10.1016/j.phytochem.2013.11.009 CrossRefGoogle Scholar
  6. Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  7. Baur R, Birch ANE, Hopkins RJ, Griffiths DW, Simmonds MSJ, Stadler E (1996) Oviposition and chemosensory stimulation of the root flies Delia radicum and D. floralis in response to plants and leaf surface extracts from resistant and susceptible Brassica genotypes. Entomol Exp Appl 78:61–75. doi: 10.1111/j.1570-7458.1996.tb00765.x CrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300. doi: 10.2307/2346101 CrossRefGoogle Scholar
  9. Blackmore MS, Lord CC (2000) The relationship between size and fecundity in Aedes albopictus. Journal of Vector Ecology 25:212–217Google Scholar
  10. Bligaard J, Meadow R, Nielsen O, Percy-Smith A (1999) Evaluation of felt traps to estimate egg numbers of cabbage root fly, Delia radicum, and turnip root fly, Delia floralis in commercial crops. Entomol Exp Appl 90:141–148. doi: 10.1046/j.1570-7458.1999.00432.x CrossRefGoogle Scholar
  11. Coaker TH, Finch S (1971) The cabbage root fly, Erioischia brassicae (Bouché). Report of the National Vegetable Research Station for 1970:23–42Google Scholar
  12. Coaker TH, Williams DA (1963) The importance of some Carabidae and Staphylinidae as predators of the cabbage root fly, Erioischia Brassicae (Bouché). Entomol Exp Appl 6:156–164. doi: 10.1111/j.1570-7458.1963.tb00613.x CrossRefGoogle Scholar
  13. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400. doi: 10.1146/annurev.ento.52.110405.091407 CrossRefGoogle Scholar
  14. Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJ, van Dam NM (2012) On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry 84:68–77. doi: 10.1016/j.phytochem.2012.08.013 CrossRefGoogle Scholar
  15. Curtis J (1860) Farm insects. Blackie & Son, GlasgowGoogle Scholar
  16. Deguine JP, Atiama-Nurbel T, Douraguia E, Rousse P (2011a) The augmentorium, a tool for agroecological crop protection. Design, implementation and evaluation on farm conditions on Reunion Island. Cah Agric 20:261–265. doi: 10.1684/agr.2011.0488 CrossRefGoogle Scholar
  17. Deguine JP, Atiama-Nurbel T, Quilici S (2011b) Net choice is key to the augmentorium technique of fruit fly sequestration and parasitoid release. Crop Prot 30:198–202. doi: 10.1016/j.cropro.2010.10.007 CrossRefGoogle Scholar
  18. den Ouden H, Theunissen J (1988) Preference and non-preference in monitoring cabbage root fly, Delia radicum/D. Brassicae/, oviposition by traps. Acta Hortic 11–14. doi: 10.17660/ActaHortic.1988.219.1
  19. Dixon PL, West RJ, McRae KB, Spaner D (2002) Suitability of felt traps to monitor oviposition by cabbage maggot (Diptera: Anthomyiidae). Can Entomol 134:205–214. doi: 10.4039/Ent134205-2 CrossRefGoogle Scholar
  20. Doane JF, Chapman RK (1964) Development of the cabbage maggot Hylemyia brassicae (Bouché) on aseptic and decaying rutabaga tissue. Entomol Exp Appl 7:115–119. doi: 10.1111/j.1570-7458.1964.tb02428.x CrossRefGoogle Scholar
  21. Dugravot S, Grolleau F, Macherel D, Rochetaing A, Hue B, Stankiewicz M, Huignard J, Lapied B (2003) Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect K(ATP) channels. J Neurophysiol 90:259–270. doi: 10.1152/jn.01096.2002 CrossRefGoogle Scholar
  22. Eigenbrode SD, Birch ANE, Lindzey S, Meadow R, Snyder WE (2016) A mechanistic framework to improve understanding and applications of push-pull systems in pest management. J Appl Ecol 53:202–212. doi: 10.1111/1365-2664.12556 CrossRefGoogle Scholar
  23. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:1781–1785. doi: 10.1073/pnas.0308037100 CrossRefGoogle Scholar
  24. Essawy AE, Gaaboub IA, Abdel-Moneim AM, El-Sayed SA (2015) Neuropathological effect of dimethyl disulfide on neurons of the desert locust Schistocerca gregaria. Toxicol Ind Health 31:422–428. doi: 10.1177/0748233713475525 CrossRefGoogle Scholar
  25. Ferry A (2007) Écologie chimique appliquée à la lutte contre Delia radicum, la mouche du chou. PhD in Biology, Université de Rennes 1Google Scholar
  26. Ferry A, Dugravot S, Delattre T, Christides JP, Auger J, Bagneres AG, Poinsot D, Cortesero AM (2007) Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J Chem Ecol 33:2064–2077. doi: 10.1007/s10886-007-9373-3 CrossRefGoogle Scholar
  27. Ferry A, Le Tron S, Dugravot S, Cortesero AM (2009) Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on Delia radicum and its natural enemies. Biol Control 49:219–226. doi: 10.1016/j.biocontrol.2009.01.013 CrossRefGoogle Scholar
  28. Finch S (1978) Volatile plant-chemicals and their effect on host plant finding by the cabbage root fly (Delia brassicae). Entomol Exp Appl 24:350–359. doi: 10.1111/j.1570-7458.1978.tb02793.x CrossRefGoogle Scholar
  29. Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on 'appropriate/inappropriate landings' by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102. doi: 10.1046/j.1570-7458.2000.00684.x CrossRefGoogle Scholar
  30. Finch S, Billiald H, Collier RH (2003) Companion planting—do aromatic plants disrupt host-plant finding by the cabbage root fly and the onion fly more effectively than non-aromatic plants? Entomol Exp Appl 109:183–195. doi: 10.1046/j.0013-8703.2003.00102.x CrossRefGoogle Scholar
  31. Freuler J, Fischer S (1982) Description d'un piège à oeufs pour la mouche du chou, Delia brassicae Wiedemann. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 55:77–85Google Scholar
  32. Gebhardt MD, Stearns SC (1988) Reaction norms for developmental time and weight at eclosion in Drosophila mercatorum. J Evol Biol 1:335–354. doi: 10.1046/j.1420-9101.1988.1040335.x CrossRefGoogle Scholar
  33. Godfrey LD, Leigh TF (1994) Alfalfa harvest strategy effect on lygus bug (Hemiptera: Miridae) and insect predator population density: implications for use as trap crop in cotton. Environ Entomol 23:1106–1118. doi: 10.1093/ee/23.5.1106 CrossRefGoogle Scholar
  34. Hawkes C, Patton S, Coaker TH (1978) Mechanisms of host plant finding in adult cabbage root fly, Delia brassicae. Entomol Exp Appl 24:419–427. doi: 10.1111/j.1570-7458.1978.tb02802.x CrossRefGoogle Scholar
  35. Hokkanen HMT (1991) Trap cropping in pest-management. Annu Rev Entomol 36:119–138. doi: 10.1146/annurev.en.36.010191.001003 CrossRefGoogle Scholar
  36. Hori M, Ohuchi K, Matsuda K (2006) Role of host plant volatile in the host-finding behavior of the strawberry leaf beetle, Galerucella vittaticollis Baly (Coleoptera: Chrysomelidae). Appl Entomol Zool 41:357–363. doi: 10.1303/aez.2006.357 CrossRefGoogle Scholar
  37. Hurter J, Ramp T, Patrian B, Stadler E, Roessingh P, Baur R, de Jong R, Nielsen JK, Winkler T, Richter WJ, Muller D, Ernst B (1999) Oviposition stimulants for the cabbage root fly: isolation from cabbage leaves. Phytochemistry 51:377–382. doi: 10.1016/s0031-9422(99)00062-x CrossRefGoogle Scholar
  38. Ikeshoji T, Ishikawa Y, Matsumoto Y (1981) Ecological and chemical interactions between onion and onion maggot, Hylemya antiqua (Diptera: Anthomyiidae). Review of Plant Protection Research 14:141–149Google Scholar
  39. James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982. doi: 10.1603/0046-225x-32.5.977 CrossRefGoogle Scholar
  40. James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50:871–880. doi: 10.1007/s10526-005-3313-3 CrossRefGoogle Scholar
  41. Javaid I, Joshi JM (1995) Trap cropping in insect pest-management. J Sustain Agr 5:117–136. doi: 10.1300/J064v05n01_09 CrossRefGoogle Scholar
  42. Kehrli P, Lehmann M, Bacher S (2005) Mass-emergence devices: a biocontrol technique for conservation and augmentation of parasitoids. Biol Control 32:191–199. doi: 10.1016/j.biocontrol.2004.09.012 CrossRefGoogle Scholar
  43. Kergunteuil A, Dugravot S, Mortreuil A, Le Ralec A, Cortesero AM (2012) Selecting volatiles to protect brassicaceous crops against the cabbage root fly, Delia radicum. Entomol Exp Appl 144:69–77. doi: 10.1111/j.1570-7458.2012.01257.x CrossRefGoogle Scholar
  44. Kergunteuil A, Dugravot S, Danner H, van Dam NM, Cortesero AM (2015) Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a ‘push-pull’ strategy toward the cabbage root fly, Delia radicum. J Chem Ecol 41:330–339. doi: 10.1007/s10886-015-0575-9 CrossRefGoogle Scholar
  45. Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962. doi: 10.1002/1526-4998(200011)56:11<957::aid-ps236>;2-t CrossRefGoogle Scholar
  46. Khan ZR, Midega CAO, Hutter NJ, Wilkins RM, Wadhams LJ (2006) Assessment of the potential of Napier grass (Pennisetum purpureum) varieties as trap plants for management of Chilo partellus. Entomol Exp Appl 119:15–22. doi: 10.1111/j.1570-7458.2006.00393.x CrossRefGoogle Scholar
  47. King KM, Forbes AR (1954) Control of root maggots in rutabagas. J Econ Entomol 47:607–615. doi: 10.1093/jee/47.4.607 CrossRefGoogle Scholar
  48. Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628. doi: 10.1111/j.1365-2745.2006.01120.x CrossRefGoogle Scholar
  49. Lenth RV (2014) lsmeans: least-squares means. Accessed: Nov 2015
  50. Lewis JA, Papavizas GC (1970) Evolution of volatile sulfur-containing compounds from decomposition of crucifers in soil. Soil Biol Biochem 2:239–246. doi: 10.1016/0038-0717(70)90030-1 CrossRefGoogle Scholar
  51. Li PY, Zhu JW, Qin YC (2012) Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles. J Econ Entomol 105:1149–1156. doi: 10.1603/ec11109 CrossRefGoogle Scholar
  52. Marazzi C, Stadler E (2004) Arabidopsis thaliana leaf-surface extracts are detected by the cabbage root fly (Delia radicum) and stimulate oviposition. Physiol Entomol 29:192–198. doi: 10.1111/j.0307-6962.2004.00384.x CrossRefGoogle Scholar
  53. McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J Chem Ecol 20:3039–3050. doi: 10.1007/bf02033709 CrossRefGoogle Scholar
  54. Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212. doi: 10.1007/bf00979619 CrossRefGoogle Scholar
  55. Morawo T, Fadamiro H (2014) Attraction of two larval parasitoids with varying degree of host specificity to single components and a binary mixture of host-related plant volatiles. Chemoecology 24:127–135. doi: 10.1007/s00049-014-0154-5 CrossRefGoogle Scholar
  56. Nijhout HF, Roff DA, Davidowitz G (2010) Conflicting processes in the evolution of body size and development time. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365:567–575. doi: 10.1098/rstb.2009.0249 CrossRefGoogle Scholar
  57. Packer MJ, Corbet PS (1989) Size variation and reproductive success of female Aedes punctor (Diptera: Culicidae). Ecol Entomol 14:297–309. doi: 10.1111/j.1365-2311.1989.tb00960.x CrossRefGoogle Scholar
  58. Prokopy RJ, Collier RH, Finch S (1983) Leaf color used by cabbage root flies to distinguish among host plants. Science 221:190–192. doi: 10.1126/science.221.4606.190 CrossRefGoogle Scholar
  59. Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy—behavioural control of Heliothis. Aust Cotton Grower May–July:7–9Google Scholar
  60. R_Core_Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J Chem Ecol 28:131–143. doi: 10.1023/a:1013519003944 CrossRefGoogle Scholar
  62. Roessingh P, Stadler E, Baur R, Hurter J, Ramp T (1997) Tarsal chemoreceptors and oviposition behaviour of the cabbage root fly (Delia radicum) sensitive to fractions and new compounds of host-leaf surface extracts. Physiol Entomol 22:140–148. doi: 10.1111/j.1365-3032.1997.tb01151.x CrossRefGoogle Scholar
  63. Rose USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage). Plant Physiol 111:487–495. doi: 10.1104/pp.111.2.487 CrossRefGoogle Scholar
  64. Rose USR, Lewis WJ, Tumlinson JH (1998) Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J Chem Ecol 24:303–319. doi: 10.1023/a:1022584409323 CrossRefGoogle Scholar
  65. Rousse P, Fournet S, Porteneuve C, Brunel E (2003) Trap cropping to control Delia radicum populations in cruciferous crops: first results and future applications. Entomol Exp Appl 109:133–138. doi: 10.1046/j.1570-7458.2003.00098.x CrossRefGoogle Scholar
  66. Samudrala D, Brown PA, Mandon J, Cristescu SM, Harren FJM (2015) Optimization and sensitive detection of sulfur compounds emitted from plants using proton transfer reaction mass spectrometry. Int J Mass Spectrom 386:6–14. doi: 10.1016/j.ijms.2015.05.013 CrossRefGoogle Scholar
  67. Shiojiri K, Ozawa R, Kugimiya S, Uefune M, van Wijk M, Sabelis MW, Takabayashi J (2010) Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals? PLoS One 5:e12161. doi: 10.1371/journal.pone.0012161 CrossRefGoogle Scholar
  68. Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agr Forest Entomol 13:45–57. doi: 10.1111/j.1461-9563.2010.00496.x CrossRefGoogle Scholar
  69. Srinivasan K, Moorthy PNK (1991) Indian mustard as a trap crop for management of major lepidopterons pests on cabbage. Tropical Pest Management 37:26–32. doi: 10.1080/09670879109371532 CrossRefGoogle Scholar
  70. Stern VM, Mueller A, Sevacher V, Way M (1969) Lygus bug control in cotton through alfalfa interplanting. Calif Agric 23:8–10Google Scholar
  71. Varis A-L (1967) Studies on the biology of the cabbage root fly (Hylemya brassicae Bouché) and the turnip root fly (Hylemya floralis Fall.) Ann Agr Fenn 6:1–13Google Scholar
  72. Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer, New York. doi: 10.1007/978-0-387-21706-2 CrossRefGoogle Scholar
  73. Veromann E, Kaasik R, Kovacs G, Metspalu L, Williams IH, Mand M (2014) Fatal attraction: search for a dead-end trap crop for the pollen beetle (Meligethes aeneus). Arthropod-Plant Inte 8:373–381. doi: 10.1007/s11829-014-9325-0 CrossRefGoogle Scholar
  74. von Arx M, Schmidt-Büsser D, Guerin PM (2011) Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana. J Insect Physiol 57:1323–1331. doi: 10.1016/j.jinsphys.2011.06.010 CrossRefGoogle Scholar
  75. Wallbank BE, Wheatley GA (1979) Some responses of cabbage root fly (Delia brassicae) to ally isothiocyanate and other volatile constituents of crucifers. Ann Appl Biol 91:1–12. doi: 10.1111/j.1744-7348.1979.tb07407.x CrossRefGoogle Scholar
  76. Whitman DW, Eller FJ (1992) Orientation of Microplitis croceipes (Hymenoptera: Braconidae) to green leaf volatiles: dose-response curves. J Chem Ecol 18:1743–1753. doi: 10.1007/bf02751099 CrossRefGoogle Scholar
  77. Wright DW, Hughes RD, Worrall J (1960) The effect of certain predators on the numbers of cabbage root fly (Erioischia brassicae (Bouché)) and on the subsequent damage caused by the pest. Ann Appl Biol 48:756–763. doi: 10.1111/j.1744-7348.1960.tb03576.x CrossRefGoogle Scholar
  78. Xu XX, Cai XM, Bian L, Luo ZX, Xin ZJ, Chen ZM (2015) Electrophysiological and behavioral responses of Chrysopa phyllochroma (Neuroptera: Chrysopidae) to plant volatiles. Environ Entomol 44:1425–1433. doi: 10.1093/ee/nvv106 CrossRefGoogle Scholar
  79. Zohren E (1968) Laboruntersuchungen zu Massenanzucht, Lebensweise, Eiablage und Eiablageverhalten der Kohlfliege, Chortophila brassicae Bouché (Diptera, Anthomyiidae). J Appl Entomol 62:139–188. doi: 10.1111/j.1439-0418.1968.tb04118.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fabrice Lamy
    • 1
    • 2
    Email author
  • Sébastien Dugravot
    • 1
    • 2
  • Anne Marie Cortesero
    • 1
    • 2
  • Valérie Chaminade
    • 1
    • 2
  • Vincent Faloya
    • 3
  • Denis Poinsot
    • 1
    • 2
  1. 1.Université de Rennes 1, UMR 1349 IGEPPRennesFrance
  2. 2.Université Bretagne LoireRennesFrance
  3. 3.Institut National de la Recherche Agronomique, UMR 1349, IGEPPRennesFrance

Personalised recommendations