Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29822–29833 | Cite as

Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis

  • Samara Mejri
  • Ali Siah
  • François Coutte
  • Maryline Magnin-Robert
  • Béatrice Randoux
  • Benoit Tisserant
  • François Krier
  • Philippe Jacques
  • Philippe Reignault
  • Patrice Halama
Chemistry, Activity and Impact of Plant Biocontrol products

Abstract

Innovation toward ecofriendly plant protection products compatible with sustainable agriculture and healthy food is today strongly encouraged. Here, we assessed the biocontrol activity of three cyclic lipopeptides from Bacillus subtilis (mycosubtilin, M; surfactin, S; fengycin, F) and two mixtures (M + S and M + S + F) on wheat against Zymoseptoria tritici, the main pathogen on this crop. Foliar application of these biomolecules at a 100-mg L−1 concentration on the wheat cultivars Dinosor and Alixan, 2 days before fungal inoculation, provided significant reductions of disease severity. The best protection levels were recorded with the M-containing formulations (up to 82% disease reduction with M + S on Dinosor), while S and F treatments resulted in lower but significant disease reductions. In vitro and in planta investigations revealed that M-based formulations inhibit fungal growth, with half-maximal inhibitory concentrations of 1.4 mg L−1 for both M and M + S and 4.5 mg L−1 for M + S + F, thus revealing that the observed efficacy of these products may rely mainly on antifungal property. By contrast, S and F had no direct activity on the pathogen, hence suggesting that these lipopeptides act on wheat against Z. tritici as resistance inducers rather than as biofungicides. This study highlighted the efficacy of several lipopeptides from B. subtilis to biocontrol Z. tritici through likely distinct and biomolecule-dependent modes of action.

Keywords

Wheat Zymoseptoria tritici Biocontrol Bacillus subtilis Lipopeptides Mycosubtilin 

Notes

Acknowledgements

We thank Corentin Duthoo for his technical help during this study and Dr. Gabrielle Chataigné for the HPLC-MS analysis. This research was conducted in the framework of the projects NewBioPest supported by the Hauts-de-France council (France) and both BioProtect and BioScreen supported by INTERREG V SMARTBIOCONTROL (European Union).

References

  1. Béchet M, Castéra-Guy J, Guez J-S et al (2013) Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour Technol 145:264–270. doi: 10.1016/j.biortech.2013.03.123 CrossRefGoogle Scholar
  2. Chandler S, Van Hese N, Coutte F et al (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.) Physiol Mol Plant Path 91:20–30. doi: 10.1016/j.pmpp.2015.05.010 CrossRefGoogle Scholar
  3. Chen XH, Koumoutsi A, Scholz R et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. doi: 10.1016/j.jbiotec.2008.10.011 CrossRefGoogle Scholar
  4. Cheval P, Siah A, Bomble M et al (2017) Evolution of QoI resistance of the wheat pathogen Zymoseptoria tritici in Northern France. Crop Prot 92:131–133. doi: 10.1016/j.cropro.2016.10.017 CrossRefGoogle Scholar
  5. Coutte F, Leclère V, Béchet M et al (2010a) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109:480–491. doi: 10.1111/j.1365-2672.2010.04683.x CrossRefGoogle Scholar
  6. Coutte F, Lecouturier D, Ait Yahia S et al (2010b) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507. doi: 10.1007/s00253-010-2504-8 CrossRefGoogle Scholar
  7. Coutte F, Lecouturier D, Leclère V et al (2013) New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem 48:25–32. doi: 10.1016/j.procbio.2012.10.005 CrossRefGoogle Scholar
  8. Cowger C, Hoffer ME, Mundt CC (2000) Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol 49:445–451. doi: 10.1046/j.1365-3059.2000.00472.x CrossRefGoogle Scholar
  9. Dean R, Van Kan JA, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x CrossRefGoogle Scholar
  10. Deravel J, Lemière S, Coutte F et al (2014) Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl Microbiol Biotechnol 98:6255–6264. doi: 10.1007/s00253-014-5663-1 CrossRefGoogle Scholar
  11. El Chartouni L, Tisserant B, Siah A et al (2011) Genetic diversity and population structure in French populations of Mycosphaerella graminicola. Mycologia 103:764–774. doi: 10.3852/10-184 CrossRefGoogle Scholar
  12. Farace G, Fernandez O, Jacquens L et al (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187. doi: 10.1111/mpp.12170 CrossRefGoogle Scholar
  13. Guo Q, Dong W, Li S et al (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540. doi: 10.1016/j.micres.2013.12.001 CrossRefGoogle Scholar
  14. Hamley IW, Dehsorkhi A, Jauregi P et al (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9:9572–9578CrossRefGoogle Scholar
  15. Han Q, Wu F, Wang X et al (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188. doi: 10.1111/1462-2920.12538 CrossRefGoogle Scholar
  16. Henry G, Deleu M, Jourdan E et al (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbio 13:1824–1837. doi: 10.1111/j.1462-5822.2011.01664.x CrossRefGoogle Scholar
  17. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol 20. Springer-Verlag, Heidelberg, pp 57–91Google Scholar
  18. Jauregi P, Coutte F, Catiau L et al (2013) Micelle size characterization of lipopeptides produced by B. subtilis and their recovery by the two-step ultrafiltration process. Sep Purif Technol 104:175–182. doi: 10.1016/j.seppur.2012.11.017 CrossRefGoogle Scholar
  19. Jørgensen LN, Hovmøller MS, Hansen JG et al (2014) IPM strategies and their dilemmas including an introduction to www.eurowheat.org. J Integr Agric 13:265–281. doi: 10.1016/S2095-3119(13)60646-2 CrossRefGoogle Scholar
  20. Jourdan E, Henry G, Duby F et al (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468. doi: 10.1094/MPMI-22-4-0456 CrossRefGoogle Scholar
  21. Kema GHJ, Yu D, Rijkenberg FHJ et al (1996) Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86:777–786. doi: 10.1094/Phyto-86-777 CrossRefGoogle Scholar
  22. Kema GHJ, Van der Lee TAJ, Mendes O et al (2008) Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella graminicola with a focus on in planta expression. Mol Plant-Microbe Interact 21:1249–1260. doi: 10.1094/MPMI-21-9-1249 CrossRefGoogle Scholar
  23. Kim PI, Ryu J, Kim YH et al (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin a from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145. doi: 10.4014/jmb.0905.05007 CrossRefGoogle Scholar
  24. Leclère V, Béchet M, Adam A et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584. doi: 10.1128/AEM.71.8.4577-4584.2005 CrossRefGoogle Scholar
  25. Lovell D, Hunter T, Powers S et al (2004) Effect of temperature on latent period of septoria leaf blotch on winter wheat under outdoor conditions. Plant Pathol 53:170–181. doi: 10.1111/j.0032-0862.2004.00983.x CrossRefGoogle Scholar
  26. Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management 26:203–206. doi: 10.1564/v26_oct_04 CrossRefGoogle Scholar
  27. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi: 10.1016/j.tim.2007.12.009 CrossRefGoogle Scholar
  28. Ongena M, Jourdan E, Adam A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. doi: 10.1111/j.1462-2920.2006.01202.x CrossRefGoogle Scholar
  29. Perez-Montaño F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336. doi: 10.1016/j.micres.2013.09.011 CrossRefGoogle Scholar
  30. Ponomarenko A, Goodwin SB, Kema GH (2011) Septoria tritici blotch (STB) of wheat. Plant Health Instructor. doi: 10.1094/PHI-I-2011-0407-01
  31. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi: 10.1111/j.1574-6976.2010.00221.x CrossRefGoogle Scholar
  32. Ravensberg W (2015) Crop protection in 2030: towards a natural, efficient, safe and sustainable approach. International Symposium Swansea University 7–9 September 2015Google Scholar
  33. Romero D, de Vicente A, Rakotoaly RH et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440. doi: 10.1094/MPMI-20-4-0430 CrossRefGoogle Scholar
  34. Rückert C, Blom J, Chen X et al (2011) Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 20:78–85. doi: 10.1016/j.jbiotec.2011.01.006 CrossRefGoogle Scholar
  35. Siah A, Deweer C, Duyme F et al (2010a) Correlation of in planta endo-beta-1,4-xylanase activity with the necrotrophic phase of the hemibiotrophic fungus Mycosphaerella graminicola. Plant Pathol 59:661–670. doi: 10.1111/j.1365-3059.2010.02303.x CrossRefGoogle Scholar
  36. Siah A, Tisserant B, El Chartouni L et al (2010b) Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism. Fungal Biol 114:980–990. doi: 10.1016/j.funbio.2010.09.008 CrossRefGoogle Scholar
  37. Siah A, Deweer C, Morand E et al (2010c) Azoxystrobin resistance of French Mycosphaerella graminicola strains assessed by four in vitro bioassays and by screening of G143A substitution. Crop Prot 29:737–743. doi: 10.1016/j.cropro.2010.02.012 CrossRefGoogle Scholar
  38. Siah A, Reignault P, Halama P (2013) Genetic diversity of Mycosphaerella graminicola isolates from a single field. Commun Agric Appl Biol Sci 78:437–442Google Scholar
  39. Siah A, Randoux B, Magnin-Robert M, et al (2017) Natural agents inducing plant resistance against diseases. In Natural Antimicrobial Agents, Sustainable Development and Biodiversity series. Edited by Mérillon J.M. and Rivière C. Springer (in press).Google Scholar
  40. Stock D, Holloway PJ (1993) Possible mechanisms for surfactant induced foliar uptake of agrochemicals. Pest Manag Sci 38:165–177. doi: 10.1002/ps.2780380211 CrossRefGoogle Scholar
  41. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240. doi: 10.1016/j.sbi.2010.01.0 CrossRefGoogle Scholar
  42. Torriani SFF, Melichar JPE, Mills C et al (2015) Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genet Biol 79:8–12. doi: 10.1016/j.fgb.2015.04.010 CrossRefGoogle Scholar
  43. Touré Y, Ongena M, Jacques P et al (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160. doi: 10.1111/j.1365-2672.2004.02252.x CrossRefGoogle Scholar
  44. Xun-Chao C, Hui L, Ya-Rong X et al (2013) Study of endophytic Bacillus amyloliquefaciens CC09 and its antifungal cyclic lipopeptides. J Appl Bio Biotechnol. doi: 10.7324/JABB.2013.1101
  45. Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:325–336. doi: 10.1111/lam.12382 CrossRefGoogle Scholar
  46. Yu GY, Sinclair JB, Hartman GL et al (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. doi: 10.1016/S0038-0717(02)00027-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Samara Mejri
    • 1
  • Ali Siah
    • 1
  • François Coutte
    • 2
  • Maryline Magnin-Robert
    • 3
  • Béatrice Randoux
    • 3
  • Benoit Tisserant
    • 3
  • François Krier
    • 2
  • Philippe Jacques
    • 2
    • 4
  • Philippe Reignault
    • 3
  • Patrice Halama
    • 1
  1. 1.Institut Charles Viollette (EA 7394)ISA, SFR Condorcet FR CNRS 3417LilleFrance
  2. 2.Institut Charles Viollette (EA 7394)Université de Lille, SFR Condorcet FR CNRS 3417Villeneuve d’Ascq CedexFrance
  3. 3.UCEIV-EA 4492Université du Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417Calais CedexFrance
  4. 4.Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium

Personalised recommendations