Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 35, pp 34938–34949 | Cite as

Effect of inorganic and organic solutes on zero-valent aluminum-activated hydrogen peroxide and persulfate oxidation of bisphenol A

  • Idil Arslan-Alaton
  • Tugba Olmez-Hanci
  • Tugce Ozturk
Advanced oxidation processes for water/wastewater treatment
  • 167 Downloads

Abstract

The effect of varying inorganic (chloride, nitrate, sulfate, and phosphate) and organic (represented by humic acid) solutes on the removal of aqueous micropollutant bisphenol A (BPA; 8.8 μM; 2 mg/L) with the oxidizing agents hydrogen peroxide (HP; 0.25 mM) and persulfate (PS; 0.25 mM) activated using zero-valent aluminum (ZVA) nanoparticles (1 g/L) was investigated at a pH of 3. In the absence of the solutes, the PS/ZVA treatment system was superior to the HP/ZVA system in terms of BPA removal rates and kinetics. Further, the HP/ZVA process was not affected by nitrate (50 mg/L) addition, whereas chloride (250 mg/L) exhibited no effect on the PS/ZVA process. The negative effect of inorganic anions on BPA removal generally speaking increased with increasing charge in the following order: NO3 (no inhibition) < Cl (250 mg/L) = SO42− < PO43− for HP/ZVA and Cl (250 mg/L; no inhibition) < NO3 < SO42− < PO43− for PS/ZVA. Upon addition of 20 mg/L humic acid representing natural organic matter, BPA removals decreased from 72 and 100% in the absence of solutes to 24 and 57% for HP/ZVA and PS/ZVA treatments, respectively. The solute mixture containing all inorganic and organic solutes together partly suppressed the inhibitory effects of phosphate and humic acid on BPA removals decreasing to 46 and 43% after HP/ZVA and PS/ZVA treatments, respectively. Dissolved organic carbon removals were obtained in the range of 30 and 47% (the HP/ZVA process), as well as 47 and 57% (the PS/ZVA process) for the experiments in the presence of 20 mg/L humic acid and solute mixture, respectively. The relative Vibrio fischeri photoluminescence inhibition decreased particularly for the PS/ZVA treatment system, which exhibited a higher treatment performance than the HP/ZVA treatment system.

Keywords

Bisphenol A Hydrogen peroxide Persulfate Zero-valent aluminum Inorganic and organic water components Acute toxicity 

Notes

Funding information

The authors are grateful to Istanbul Technical University Research Foundation for the financial support under Project No. 39463 and No. 39547.

Supplementary material

11356_2017_1182_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 36 kb)

References

  1. Arslan-Alaton I, Olmez-Hanci T, Korkmaz G, Sahin C (2017a) Removal of iopamidol, an iodinated X-ray contrast media, by zero-valent aluminum-activated H2O2 and S2O8 2− oxidation. Chem Eng J 318:64–75.  https://doi.org/10.1016/j.cej.2016.05.021 CrossRefGoogle Scholar
  2. Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H (2017b) Oxidative degradation of Triton X-45 using zero valent aluminum in the presence of hydrogen peroxide, persulfate and peroxymonosulfate. Catal Today 280:199–207.  https://doi.org/10.1016/j.cattod.2016.04.039 CrossRefGoogle Scholar
  3. Azerrad SP, Gur-Reznik S, Heller-Grossman L, Dosoretz CG (2014) Advanced oxidation of iodinated x-ray contrast media in reverse osmosis brines: the influence of quenching. Water Res 62:107–116.  https://doi.org/10.1016/j.watres.2014.05.041 CrossRefGoogle Scholar
  4. Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45(8):2473–2484.  https://doi.org/10.1016/j.watres.2011.01.026 CrossRefGoogle Scholar
  5. Bokare AD, Choi W (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43(18):7130–7135.  https://doi.org/10.1021/es9013823 CrossRefGoogle Scholar
  6. Cheng Z, Fu F, Pang Y, Tang B, Lu J (2015) Removal of phenol by acid-washed zero-valent aluminium in the presence of H2O2. Chem Eng J 260:284–290.  https://doi.org/10.1016/j.cej.2014.09.012 CrossRefGoogle Scholar
  7. Chiang K, Lim TM, Tsen L, Lee CC (2004) Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl Catal A 261(2):225–237.  https://doi.org/10.1016/j.apcata.2003.11.004 CrossRefGoogle Scholar
  8. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211-212:112–125.  https://doi.org/10.1016/j.jhazmat.2011.11.073 CrossRefGoogle Scholar
  9. Deng Y, Ezyske CM (2011) Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res 45(18):6189–6194.  https://doi.org/10.1016/j.watres.2011.09.015 CrossRefGoogle Scholar
  10. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S (2014) Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. Int J Environ Sci Technol 11(4):881–890.  https://doi.org/10.1007/s13762-013-0284-2 CrossRefGoogle Scholar
  11. Dogan M, Ozturk T, Olmez-Hanci T, Arslan-Alaton I (2016) Persulfate and hydrogen peroxide-activated degradation of bisphenol A with nano-scale zero-valent iron and aluminum. J Adv Oxid Technol 19(2):266–275.  https://doi.org/10.1515/jaots-2016-0210Google Scholar
  12. Erler C, Novak J (2010) Bisphenol A exposure: human risk and health policy. J Pediatr Nurs 25(5):400–407.  https://doi.org/10.1016/j.pedn.2009.05.006 CrossRefGoogle Scholar
  13. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34.  https://doi.org/10.1016/j.jenvman.2012.03.021 CrossRefGoogle Scholar
  14. Gara PMD, Bosio GN, Gonzalez MC, Russo N, del Carmen Michelini M, Pis Diez R, Mártire DO (2009) A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion. Photochem Photobiol Sci 8(7):992–997.  https://doi.org/10.1039/B900961B CrossRefGoogle Scholar
  15. Girit B, Dursun D, Olmez-Hanci T, Arslan-Alaton I (2015) Treatment of aqueous bisphenol A using nano-sized zero-valent iron in the presence of hydrogen peroxide and persulfate oxidants. Water Sci Technol 71(12):1859–1868.  https://doi.org/10.2166/wst.2015.175 CrossRefGoogle Scholar
  16. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3-4):501–551.  https://doi.org/10.1016/S1093-0191(03)00032-7 CrossRefGoogle Scholar
  17. Grebel JE, Pignatello JJ, Mitch WA (2010) Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ Sci Technol 44(17):6822–6828.  https://doi.org/10.1021/es1010225 CrossRefGoogle Scholar
  18. Han Q, Wang H, Dong W, Liu T, Yin Y, Fan H (2015) Degradation of bisphenol A by ferrate(VI) oxidation: kinetics, products and toxicity assessment. Chem Eng J 262:34–40.  https://doi.org/10.1016/j.cej.2014.09.071 CrossRefGoogle Scholar
  19. Hu JY, Chen X, Tao G, Kekred K (2007) Fate of endocrine disrupting compounds in membrane bioreactor systems. Environ Sci Technol 41(11):4097–4102.  https://doi.org/10.1021/es062695v CrossRefGoogle Scholar
  20. International Organisation for Standardization (ISO) 11348–3 (2007) Water quality-determination of the ınhibitory effect of water samples on the light emission of Vibrio fischeri. International Organisation for Standardization, GenevaGoogle Scholar
  21. Ioan I, Wilson S, Lundanes E, Neculai A (2007) Comparison of Fenton and sono-Fenton bisphenol A degradation. J Hazard Mater 142(1-2):559–563.  https://doi.org/10.1016/j.jhazmat.2006.08.015 CrossRefGoogle Scholar
  22. Irmak S, Erbatur O, Akgerman A (2005) Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J Hazard Mater B 126(1-3):54–62.  https://doi.org/10.1016/j.jhazmat.2005.05.045 CrossRefGoogle Scholar
  23. Klassen NV, Marchington D, McGowan HCE (1994) H2O2 determination by the I3 method and by KMnO4 titration. Anal Chem 66(18):2921–2925.  https://doi.org/10.1021/ac00090a020 CrossRefGoogle Scholar
  24. Liang C, Wang ZS, Mohanty N (2006) Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci Total Environ 370(2-3):271–277.  https://doi.org/10.1016/j.scitotenv.2006.08.028 CrossRefGoogle Scholar
  25. Lien H-L, Yu CC, Lee Y-C (2010) Perchlorate removal by acidified zero-valent aluminum and aluminum hydroxide. Chemosphere 80(8):888–893.  https://doi.org/10.1016/j.chemosphere.2010.05.013 CrossRefGoogle Scholar
  26. Lin K, Cai J, Sun J, Xue X (2013) Removal of 2,4-dichlorophenol by aluminium/O2/acid system. J Chem Technol Biotechnol 88(12):2181–2187.  https://doi.org/10.1002/jctb.4083 CrossRefGoogle Scholar
  27. Liu W, Zhang H, Cao B, Lin K, Gan J (2010) Oxidative removal of bisphenol A using zero valent aluminum-acid system. Water Res 45(4):1872–1878.  https://doi.org/10.1016/j.watres.2010.12.004 CrossRefGoogle Scholar
  28. Miralles-Cuevas S, Oller I, Agüera A, Llorca M, Sánchez Pérez JA, Malato S (2017) Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. J Hazard Mater 323A:442–451.  https://doi.org/10.1016/j.jhazmat.2016.03.013 CrossRefGoogle Scholar
  29. Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17(3):1027–1385.  https://doi.org/10.1063/1.555808 CrossRefGoogle Scholar
  30. O’Connor JC, Chapin RE (2003) Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl Chem 75(11-12):2099–2123.  https://doi.org/10.1351/pac200375112099 CrossRefGoogle Scholar
  31. Press-Kristensen K, Lindblom E, Schmidt JE, Henze M (2008) Examining the biodegradation of endocrine disrupting bisphenol A and nonylphenol in WWTPs. Water Sci Technol 57(8):1253–1256.  https://doi.org/10.2166/wst.2008.229 CrossRefGoogle Scholar
  32. Repousi V, Petala A, Frontistis Z, Antonopoulou M, Konstantinou I, Kondarides DI, Mantzavinos D (2017) Photocatalytic degradation of bisphenol A over Rh/TiO2 suspensions in different water matrices. Catal Today 284:59–66.  https://doi.org/10.1016/j.cattod.2016.10.021 CrossRefGoogle Scholar
  33. Richard J, Boergers A, vom Eyser C, Bester K, Tuerk J (2014) Toxicity of the micropollutants bisphenol a, ciprofloxacin, metoprolol and sulfamethoxazole in water samples before and after the oxidative treatment. Int J Hyg Environ Health 217(4-5):506–514.  https://doi.org/10.1016/j.ijheh.2013.09.007 CrossRefGoogle Scholar
  34. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1-2):27–34.  https://doi.org/10.1016/j.jsbmb.2011.05.002 CrossRefGoogle Scholar
  35. Suchetana B, Rajagopalan B, Silverstein J (2017) Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model. Sci Total Environ 598:249–257.  https://doi.org/10.1016/j.scitotenv.2017.03.236 CrossRefGoogle Scholar
  36. Tan C, Gao N, Deng Y, Zhang Y, Sui M, Deng J, Zhou S (2013) Degradation of antipyrine by UV, UV/H2 O2 and UV/PS. J Hazard Mater 260:1008–1016.  https://doi.org/10.1016/j.jhazmat.2013.06.060 CrossRefGoogle Scholar
  37. Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C (2007) Bisphenol A mineralization by integrated ultrasound-UV-ion(II) treatment. Environ Sci Technol 41(1):297–302.  https://doi.org/10.1021/es061440e CrossRefGoogle Scholar
  38. Trujillo-Reyes J, Peralta-Vide JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503.  https://doi.org/10.1016/j.jhazmat.2014.08.029 CrossRefGoogle Scholar
  39. Tsitonaki A, Petri B, Crimi M, Mossbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40(1):55–91.  https://doi.org/10.1080/10643380802039303 CrossRefGoogle Scholar
  40. Villegas E, Pomeraz Y, Shellenberger JA (1963) Colorimetric determination of persulfate with Alcian blue. Anal Chim Acta 29:145–148.  https://doi.org/10.1016/S0003-2670(00)88595-5 CrossRefGoogle Scholar
  41. Wang F, Wu Y, Gao Y, Li H, Chen Z (2016) Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron. Sep Purif Technol 170:337–343.  https://doi.org/10.1016/j.seppur.2016.06.046 CrossRefGoogle Scholar
  42. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42(4):415–418.  https://doi.org/10.1016/S0045-6535(00)00079-5 CrossRefGoogle Scholar
  43. Yang Y, Pignatello JJ, Ma J, Mitch WA (2016) Effect of matrix components on UV/H2O2 and UV/S2O8 2− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res 89:192–200.  https://doi.org/10.1016/j.watres.2015.11.049 CrossRefGoogle Scholar
  44. Zhang H, Cao B, Liu W, Lin K, Feng J (2012) Oxidative removal of acetaminophen using zero valent aluminum-acid system: efficacy, influencing factors, and reaction mechanism. J Environ Sci 24(2):314–319.  https://doi.org/10.1016/S1001-0742(11)60769-9 CrossRefGoogle Scholar
  45. Zhao L, Ji Y, Kong D, Lu J, Zhou Q, Yin X (2016) Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process. Chem Eng J 303:458–466.  https://doi.org/10.1016/j.cej.2016.06.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Idil Arslan-Alaton
    • 1
  • Tugba Olmez-Hanci
    • 1
  • Tugce Ozturk
    • 1
  1. 1.School of Civil Engineering, Department of Environmental EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations