Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29901–29909 | Cite as

Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species

  • Gilles-Alex Pakora
  • Joseph Mpika
  • Daouda Kone
  • Michel Ducamp
  • Ismael Kebe
  • Bastien Nay
  • Didier Buisson
Chemistry, Activity and Impact of Plant Biocontrol products

Abstract

Cocoa production is affected by the black pod disease caused by several Phytophthora species that bring, about each year, an estimated loss of 44% of world production. Chemical control remains expensive and poses an enormous risk of poisoning for the users and the environment. Biocontrol by using antagonistic microorganisms has become an alternative to the integrated control strategy against this disease. Trichoderma viride T7, T. harzanium T40, and T. asperellum T54, which showed in vivo and in vitro antagonistic activity against P. palmivora, were cultured and mycelia extracted. Inhibition activity of crude extracts was determined, and then organic compounds were isolated and characterized. The in vitro effect of each compound on the conidia germination and mycelia growth of four P. palmivora, two P. megakaria, and one P. capsici was evaluated. T. viride that displayed best activities produced two active metabolites, viridin and gliovirin, against P. palmivora and P. megakaria strains. However, no activity against P. capsici was observed. Besides being active separately, these two compounds have a synergistic effect for both inhibitions, mycelia growth and conidia germination. These results provide the basis for the development of a low-impact pesticide based on a mixture of viridin and gliovirine.

Keywords

Cacao Phytophthora Trichoderma virens Viridin Gliovirin Synergistic effect 

Notes

Acknowledgements

The authors wish to thank C. Bance for technical assistance, L. Dubost for mass spectra, A. Deville for NMR spectra, and J. Mpika for providing the Trichoderma strains used in this study. The Government of Ivory Coast is acknowledged for the PhD fellowship to G.-A. P.).

Supplementary material

11356_2017_283_MOESM1_ESM.pptx (939 kb)
ESM 1 (PPTX 938 kb).

References

  1. Acebo-Guerrero Y, Hernandez-Rodriguez A, Heydrich-Perez M, El Jaziri M, Hernandes-Lauzardo AN (2011) Management of black pod rot in cacao (Theobroma cacao L.): a review. Fruits 67:41–48CrossRefGoogle Scholar
  2. Acebo-Guerrero Y, Hernandez-Rodriguez A, Vandeputte O, Miguelez-Sierra Y, Heydrich-Perez M, Ye L, Cornelis P, Bertin P, El Jaziri M (2015) Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). J Appl Microbiol 119:1112–1126CrossRefGoogle Scholar
  3. Andersson PF, Johansson SBK, Stenlid J, Broberg A (2010) Isolation, identification and necrotic activity of viridiol from Chalara fraxinea, the fungus responsible for dieback of ash. For Pathol 40:43–46CrossRefGoogle Scholar
  4. Avent AG, Hanson JR, Truneh A (1992) Metabolites of Gliocladium flavofuscum. Phytochemistry 32:197–198CrossRefGoogle Scholar
  5. Bacikova D, Betina V, Nemec P (1965) Antihelminthic activity of antibiotics. Nature 206:1371–1372CrossRefGoogle Scholar
  6. Bae SJ, Mohanta TK, Chung JY et al (2016) Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 92:128–138CrossRefGoogle Scholar
  7. Brian PW, McGowan JG (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145CrossRefGoogle Scholar
  8. Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16CrossRefGoogle Scholar
  9. Calhoun LA, Findlay JA, David MJ, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286CrossRefGoogle Scholar
  10. Chen Y-Y, Chen P-C, Tsay T-T (2016) The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol Control 98:34–42CrossRefGoogle Scholar
  11. Dipietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens—isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313CrossRefGoogle Scholar
  12. El-Hasan A, Walker F, Schone J, Buchenauer H (2009) Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124:457–470CrossRefGoogle Scholar
  13. Grove J.F., Moffatt J.S. & Vischer E.B. (1965) Viridin. Part I. Isolation and characterisation. J Chem Soc 3803–3811.  https://doi.org/10.1039/JR9650003803
  14. Haesler F, Hagn A, Frommberger M, Hertkorn N, Schmitt-Kopplin P, Munch JC, Schloter M (2008) In vitro antagonism of an actinobacterial Kitasatospora isolate against the plant pathogen Phytophthora citricola as elucidated with ultrahigh resolution mass spectrometry. J Microbiol Methods 75:188–195CrossRefGoogle Scholar
  15. Hanada RE, Souza TD, Pomella AWV, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343CrossRefGoogle Scholar
  16. Hanada RE, Pomella AWV, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149CrossRefGoogle Scholar
  17. Howell CR (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and Damping-Off of Cotton Seedlings. Phytopathology 72:496–498CrossRefGoogle Scholar
  18. Howell CR (1991) Biological-control of pythium damping-off of cotton with seed-coating preparations of Gliocladium virens. Phytopathology 81:738–741CrossRefGoogle Scholar
  19. Howell CR, Puckhaber LS (2005) Study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biol Control 33:217–222CrossRefGoogle Scholar
  20. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological-control of Pythium ultimum. Can J Microbiol 29:321–324CrossRefGoogle Scholar
  21. Howell CR, Stipanovic RD (1984) Mycoherbicidal activity of Gliocladium virens by means of viridiol production. Phytopathology 74:836–836CrossRefGoogle Scholar
  22. Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441CrossRefGoogle Scholar
  23. ICCO (2014) Quarterly Bulletin of Cocoa Statistics, Vol XL, No 2, Cocoa year 2013/14 accessed online at. http://www.icco.org/statistics/production-and-grindings/production.html
  24. Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473CrossRefGoogle Scholar
  25. Itoh Y, Takahashi S, Arai M (1982) Structure of gliocladic acid. J Antibiot 35:541–542CrossRefGoogle Scholar
  26. Iwasa E, Hamashima Y, Sodeoka M (2011) Epipolythiodiketopiperazine alkaloids: total syntheses and biological activities. Israel Journal of Chemistry 51:420–433CrossRefGoogle Scholar
  27. Kamoun S, Furzer O, Jones JDG et al (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434CrossRefGoogle Scholar
  28. Lee SH, Cho YE, Park SH, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49–58CrossRefGoogle Scholar
  29. Leng PF, Zhang ZM, Pan GT, Zhao MJ (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873Google Scholar
  30. Lumsden RD, Ridout CJ, Vendemia ME, Harrison DJ, Waters RM, Walter JF (1992) Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Microbiol 38:1274–1280CrossRefGoogle Scholar
  31. Mishra V (2010) In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol 2:28–35Google Scholar
  32. Mpika J, Kebe IB, Issali AE, N'Guessan FK, Druzhinina S, Komon-Zelazowska M, Kubicek CP, Ake S (2009) Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Cote d'Ivoire. Afr J Biotechnol 8:5280–5293Google Scholar
  33. Ndoumbe-Nkeng M, Cilas C, Nyemb E, Nyasse S, Bieysse D, Flori A, Sache I (2004) Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Prot 23:415–424CrossRefGoogle Scholar
  34. Nyadanu D, Assuah MK, Adomako B, Asiama YO, Opoku IY, Adu-Ampomah Y (2009) Efficacy of screening methods used in breeding for black pod disease resistance varieties in cocoa. Afri Crop Sci J 17:175–186Google Scholar
  35. Nyassé S, Efombagn MIB, Kébé BI, Tahi M, Despréaux D, Cilas C (2007) Integrated management of Phytophthora diseases on cocoa (Theobroma cacao L): impact of plant breeding on pod rot incidence. Crop Prot 26:40–45CrossRefGoogle Scholar
  36. Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I (2014) Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 117:1168–1180CrossRefGoogle Scholar
  37. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2007) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRefGoogle Scholar
  38. Saravanakumar K, Yu CJ, Dou K, Wang M, Li YQ, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp cucumerinum. Biol Control 94:37–46CrossRefGoogle Scholar
  39. Seephonkai P, Kongsaeree P, Prabpai S, Isaka M, Thebtaranonth Y (2006) Transformation of an irregularly bridged epidithiodiketopiperazine to trichodermamide A. Org Lett 8:3073–3075CrossRefGoogle Scholar
  40. Segarra G, Aviles M, Casanova E, Borrero C, Trillas I (2013) Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr 52:77–83Google Scholar
  41. Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619CrossRefGoogle Scholar
  42. Smith A, Blois J, Yuan H et al (2009) The antiproliferative cytostatic effects of a self-activating viridin prodrug. Mol Cancer Ther 8:1666–1675CrossRefGoogle Scholar
  43. Sriwati R, Melnick RL, Muarif R, Strem MD, Samuels GJ, Bailey BA (2015) Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biol Control 89:33–41CrossRefGoogle Scholar
  44. Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330CrossRefGoogle Scholar
  45. Takeuchi K, Noda N, Katayose Y, Mukai Y, Numa H, Yamada K, Someya N (2015) Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Mol Plant-Microbe Interact 28:333–342CrossRefGoogle Scholar
  46. Tanaka Y, Shiomi K, Kamei K et al (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160CrossRefGoogle Scholar
  47. Tondje PR, Hebbar KP, Samuels G, Bowers JH, Weise S, Nyemb E, Begoude D, Foko J, Fontem D (2006) Bioassay of Genicolosporium species for Phytophthora megakarya biological control on cacao pod husk pieces. Afr J Biotechnol 5:648–652Google Scholar
  48. Tondje PR, Roberts DP, Bon MC et al (2007) Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control 43:202–212CrossRefGoogle Scholar
  49. Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90CrossRefGoogle Scholar
  50. Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635Google Scholar
  51. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20CrossRefGoogle Scholar
  52. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035CrossRefGoogle Scholar
  53. Vinale F, Sivasithamparam K, Ghisalberti EL et al (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139CrossRefGoogle Scholar
  54. Weisshoff H, Hentschel S, Zaspel I, Jarling R, Krause E, Pham TLH (2014) PPZPMs—a novel group of cyclic lipodepsipeptides produced by the Phytophthora alni associated strain Pseudomonas sp JX090307—the missing link between the viscosin and amphisin group. Nat Prod Commun 9:989–996Google Scholar
  55. Yamaguchi Y, Manita D, Takeuchi T, Kuramochi K, Kuriyama I, Sugawara F, Yoshida H, Mizushina Y (2010) Novel terpenoids, trichoderonic acids A and B isolated from Trichoderma virens, are selective inhibitors of family X DNA polymerases. Biosci Biotechnol Biochem 74:793–801CrossRefGoogle Scholar
  56. Zhou Y, Choi YL, Sun M, Yu ZN (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique (CNRS UMR 7245)ParisFrance
  2. 2.Département de Biosciences, Laboratoire Pharmacodynamie BiochimiqueUniversité Felix Houphouët-BoignyAbidjanCôte d’Ivoire
  3. 3.Station de Recherche de Bimbresso, CNRAAbidjanCôte d’Ivoire
  4. 4.Laboratoire de Physiologie VégétaleUniversité de Cocody AbidjanAbidjanCôte d’Ivoire
  5. 5.UMR BGPI-CIRAD, TA A 54/K, Campus International de BaillarguetMontpellier Cedex 5France
  6. 6.Laboratoire de Phytopathologie, CNRADivoCôte d’Ivoire

Personalised recommendations