Advertisement

Novel method for detection probability and estimating population size of mountain frog, Rana macrocnemis (Boulenger, 1885) at the end of its distribution range

  • Alireza PesaraklooEmail author
  • Masoumeh Najibzadeh
  • Seyed Jamal Mirkamali
Original Paper
  • 28 Downloads

Abstract

Local amphibian populations at the edge of a species range are possibly of greater conservation concern than any other amphibians group. They experience greater demographic fluctuation than populations at the core of the range. We detected the most suitable distribution range of R. macrocnemis by maximum entropy (MaxEnt) method at the end of the southeastern edge of natural distribution range to find out which environmental variables have a significant role in determining the distribution pattern of this species in marginal populations. According to the map constructed, three important variables had a high contribution to species presence as land cover (63.4%), annual precipitation (27%), and precipitation of coldest quarter of the year (5.4%) variables. Then, we described new methods for estimating detection probability for terrestrial frogs, specifically R. macrocnemis. Finally, we estimated the population size of mountain frogs by calculated detection probability. Our repeated capture–re-capture (RCR) results suggest that the estimated detection probability for R. macrocnemis is: \(\widehat{p} = 0.052\). Thus, the total average number of R. macrocnemis obtained from the 17 habitat sites is 982.5 adults (range: 708–1211 adults). In conclusion, the population estimates by detection probability index are generally much higher than densities reported for the Mountain frog populations than visual encounter estimation about 50.5 adults (range: 37–63 adults).

Keywords

The mountain frog Central iran Habitat suitability MaxEnt Repeated capture–recapture (RCR) Detection probability 

Notes

Acknowledgements

This research conducted in Markazi Province was funded by Arak University, Markazi, Iran (2017–2018/Grant Number 96.12586). The author would like to thank the Iranian Department of Environment for sampling authorization.

References

  1. Afsar M, Afsar B, Arikan H (2015) Classification of the mountain frogs of the Berçelan Plateau (Hakkari), east Anatolia (Turkey) (Anura: Ranidae). Herpetozoa 28(1/2):15–27Google Scholar
  2. Alford RA, Dixon PM, Pechmann JHK (2001) Global amphibian population declines. Nature 412:499–500PubMedCrossRefPubMedCentralGoogle Scholar
  3. Allentoft ME, Brien JO (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71CrossRefGoogle Scholar
  4. Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297Google Scholar
  5. Araujo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  6. Bailey LL, Simons TR, Pollock KH (2004a) Estimating detection probability parameters for plethodon salamanders using the robust capture–recapture design. J Wildlife Manage 68:1–13CrossRefGoogle Scholar
  7. Bailey LL, Simons TR, Pollock KH (2004b) Comparing population size estimators for plethodontid salamanders. J Herpetol 38:370–380CrossRefGoogle Scholar
  8. Bernardes M, Rödder D, Nguyen TT, Pham CT, Nguyen TQ, Ziegler T (2013) Habitat characterization and potential distribution of Tylototriton vietnamensis in northern Vietnam. J Nat Hist 47:1161–1175CrossRefGoogle Scholar
  9. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F (2008) Indicators for biodiversity in agricultural landscapes: a pan European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  10. Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608CrossRefGoogle Scholar
  11. Blaustein AR, Susan CW, Betsy AB, Lawler JJ, Catherine LS, Stephanie SG (2010) Direct and indirect effects of climate change on amphibian populations. Diversity 2:281–313CrossRefGoogle Scholar
  12. Carey C, Bryant CJ (1995) Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ Health Perspect 103:13–17PubMedPubMedCentralGoogle Scholar
  13. Çiçek K (2011) Food composition of Uludağ frog, Rana macrocnemis Boulenger, 1885 in Uludağ (Bursa, Turkey). Acta Herpetol 6(1):87–99Google Scholar
  14. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, New York, p 452Google Scholar
  15. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol conserv 128(2):231–240CrossRefGoogle Scholar
  16. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150CrossRefGoogle Scholar
  17. Dodd CK, Dorazio RM (2004) Using counts to simultaneously estimate abundance and detection probabilities in a salamander community. Herpetologica 60:468–478CrossRefGoogle Scholar
  18. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park. Ghana. Molecular Ecol 12(6):1389–1402CrossRefGoogle Scholar
  19. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  20. Frost DR (2016) Amphibian species of the world: an online reference. Version 6.0, Electronic database. American museum of natural history, New York, USA. https://research.amnh.org/herpetology/amphibia/index.html. Accessed Feb 2016
  21. Gibbs JP, Shriver WG (2005) Can road mortality limit populations of pool-breeding amphibians? Wetl Ecol Manag 13:281–289CrossRefGoogle Scholar
  22. Gill DE (1985) Interpreting breeding patterns from census data: a solution to the Husting dilemma. Ecology 66:344–354CrossRefGoogle Scholar
  23. Hels T, Buchwald E (2001) The effect of road kills on amphibian populations. Biol Conserv 99:331–340CrossRefGoogle Scholar
  24. Hendrickx F, Maelfait JP, Wingerden W, Schweiger O, Billeter R, Speelmans M, Augenstein I, Aviron S, Bailey D, Bukacek R, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  25. Heyer WR, Donnelly MA, Mcdiarmid RW, Hayek LAC, Foster MS (1994) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington D C.Google Scholar
  26. Hickey JR, Sollmann R (2018) A new mark-recapture approach for abundance estimation of social species. PLoS ONE 13(12):e0208726PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int Climatol 25:1965–1978CrossRefGoogle Scholar
  28. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hyde EJ, Simons TR (2001) Sampling plethodontid salamanders: sources of variability. J Wildlife Manag 65:624–632CrossRefGoogle Scholar
  30. Iranian metrological organization (2019); www. Irimo.irGoogle Scholar
  31. James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, Fisher MC, Berger L, Weldon C, du Preez L, Longcore JE (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5:e1000458PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110CrossRefGoogle Scholar
  33. Ke´ry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecol 9:207–216CrossRefGoogle Scholar
  34. Licht LE, Grant KP (1997) The effects of ultraviolet radiation on the biology of amphibians. Amer Zool 37:137–145CrossRefGoogle Scholar
  35. Marco A, Quilchano C, Blaustein AR (1999) Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific northwest, USA. Environ Toxicol Chem 18:2836–2839CrossRefGoogle Scholar
  36. Markazi province Metrological department (2017) https://markazimet.ir/dorsapax/userfiles/file/ordi96.pdf. Accessed July 2017
  37. McCrea RS, Morgan BJ (2014) Analysis of capture-recapture data. Chapman and Hall/CRCGoogle Scholar
  38. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Biol 14:1991–2005Google Scholar
  39. Najibzadeh M (2017) Taxonomy of brown frogs of the genus Rana (Linnaeus, 1758) (Anura: Ranidae) in Iran inferred from molecular and morphological data. PhD thesis, Razi University, Iran, In PersianGoogle Scholar
  40. Najibzadeh M, Gharzi A, Rastegar-Pouyani N, Rastegar-Pouyani E, Pesarakloo A (2017) Habitat suitability for the Caucasian frog Rana macrocnemis Boulenger, 1885 (Amphibia:Anura: Ranidae). Russ J ecol 48(3):280–286CrossRefGoogle Scholar
  41. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  42. Phillips SJ, Dudik M (2008) Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  44. Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manage 46:757–760CrossRefGoogle Scholar
  45. Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119CrossRefGoogle Scholar
  46. Pullin A (2002) Conservation biology. Cambridge University Press, New YorkCrossRefGoogle Scholar
  47. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942PubMedCrossRefPubMedCentralGoogle Scholar
  48. Rödder D, Lötters S (2010) Potential distribution of the alien invasive Brown tree snake, Boiga irregularis (Reptilia: Colubridae). Pac Sci 64:11–22CrossRefGoogle Scholar
  49. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TW, Veith M, Walker S, Fisher M, Lötters S (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66CrossRefGoogle Scholar
  50. Roy J, Vigilant L, Gray M, Wright E, Kato R, Kabano P et al (2014) Challenges in the use of genetic mark recapture to estimate the population size of Bwindi mountain gorillas (Gorilla beringei beringei). Biolo Conserv 180:249–261CrossRefGoogle Scholar
  51. Schmidt BR (2004) Declining amphibian populations: the pitfalls of count data in the study of diversity, distributions, dynamics and demography. Herpetol J 14:167–174Google Scholar
  52. Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. MacMillan, New YorkGoogle Scholar
  53. Storfer A, Eastman JM, Spear SF (2009) Modern Molecular Methods for Amphibian Conservation. BioScience 59 (7) 559 571.CrossRefGoogle Scholar
  54. Stuart S, Chanson J, Cox N, Young B, Rodrigues A, Fischman D, Waller R (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE 6(12):e28244.  https://doi.org/10.1371/journal.pone.0028244 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tarkhnishvili D, Hille A, Böhme W (2001) Humid forest refugia, speciation and secondary introgression between evolutionary lineages: differentiation in a Near Eastern brown frog, Rana macrocnemis. Biol J Linn Soc 74:141–156CrossRefGoogle Scholar
  57. Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic Press, San DiegoGoogle Scholar
  58. Veith M, Kosuch J, Vences M (2003a) Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Anura, Ranidae). Mol Phylogenet Evol 26:310–327PubMedCrossRefPubMedCentralGoogle Scholar
  59. Veith M, Schmidtler FJ, Kosuch J, Baran I, Seitz A (2003b) Paleoclimatic changes explain Anatolian mountain frogs: evolution: a test for alternating vicariance and dispersal events. Mol Ecol 12:185–199PubMedCrossRefPubMedCentralGoogle Scholar
  60. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585PubMedCrossRefGoogle Scholar
  61. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci 105:11466–11473PubMedCrossRefGoogle Scholar
  62. Warkentin IG, Bickford D, Sodhi NS, Bradshaw CJA (2009) Eating frogs to extinction. Conserv Biol 23:1056–1059PubMedCrossRefGoogle Scholar
  63. Weyrauch SL, Grubb TC (2006) Effects of the interaction between genetic diversity and UV-B radiation on wood frog fitness. Biol Conserv 20:802–810CrossRefGoogle Scholar
  64. White GC, Cooch EG (2017) Population abundance estimation with heterogeneous encounter probabilities using numerical integration. J Wildl Manag 81(2):322–336CrossRefGoogle Scholar
  65. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453CrossRefGoogle Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceArak UniversityArakIran
  2. 2.Iranian Plateau Herpetology Research Group (IPHRG)Razi UniversityKermanshahIran
  3. 3.Department of Mathematics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations