Experimental Mechanics

, Volume 59, Issue 8, pp 1223–1232 | Cite as

3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation

  • S. L. TruesdellEmail author
  • E. L. George
  • C. E. Seno
  • M. M. Saunders


This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.


Mechanotransduction Matrix deformation Osteocytes Finite element analysis 3D printing 



The authors would like to thank Mr. Stephen Paterson for his help with 3D printing. This work was supported by the National Science Foundation under Grant Nos. (CBET 1060990 and EBMS 1700299). Also, this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (2018250692). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Supplementary material

Online Resource 1 (SLDPRT 155 kb)
Online Resource 2 (SLDPRT 96 kb)
Online Resource 3 (SLDPRT 188 kb)
Online Resource 4 (SLDPRT 91 kb)
Online Resource 5 (SLDPRT 162 kb)
Online Resource 6 (SLDPRT 81 kb)
11340_2019_531_Fig8_ESM.png (608 kb)
Supplementary Fig. S1

(PNG 608 kb)

11340_2019_531_MOESM7_ESM.tif (81 kb)
ESM 7 (TIFF 80.5 kb)
11340_2019_531_Fig9_ESM.png (193 kb)
Supplementary Fig. S2

(PNG 193 kb)

11340_2019_531_MOESM8_ESM.tif (366 kb)
ESM 8 (TIFF 365 kb)


  1. 1.
    Wang N (2017) Review of cellular mechanotransduction. J Phys D Appl Phys 50(23):233002CrossRefGoogle Scholar
  2. 2.
    Wittkowske C, Reilly GC, Lacroix D, Perrault CM (2016) In vitro bone cell models: Impact of fluid shear stress on bone formation. Front Bioeng Biotechnol 4:87. CrossRefGoogle Scholar
  3. 3.
    Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5):344–358. CrossRefGoogle Scholar
  4. 4.
    Gusmão CVBD, Belangero WD (2009) How do bone cells sense mechanical loading? Rev Bras Ortop 44(4):299–305. CrossRefGoogle Scholar
  5. 5.
    Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145. CrossRefGoogle Scholar
  6. 6.
    Klein-Nulend J, Bacabac RG, Bakker AD (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 24:278–291CrossRefGoogle Scholar
  7. 7.
    Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Aging, osteocytes, and mechanotransduction. Curr Osteoporos Rep 15(5):401–411. CrossRefGoogle Scholar
  8. 8.
    Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190. CrossRefGoogle Scholar
  9. 9.
    Plotkin LI, Bellido T (2013) Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52(1):157–166. CrossRefGoogle Scholar
  10. 10.
    Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A 104(40):15941–15946. CrossRefGoogle Scholar
  11. 11.
    Mikuni-Takagaki YJJB, Metabolism M (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17(1):57–60. CrossRefGoogle Scholar
  12. 12.
    Lewis KJ, Frikha-Benayed D, Louie J, Stephen S, Spray DC, Thi MM, Seref-Ferlengez Z, Majeska RJ, Weinbaum S, Schaffler MB (2017) Osteocyte calcium signals encode strain magnitude and loading frequency in vivo. Proc Natl Acad Sci U S A 114(44):11775–11780. CrossRefGoogle Scholar
  13. 13.
    Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19(4):319–338CrossRefGoogle Scholar
  14. 14.
    Rawlinson SCF, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts' and osteocytes' early responses to mechanical strain. Bone 19(6):609–614. CrossRefGoogle Scholar
  15. 15.
    Kawata A, Mikuni-Takagaki Y (1998) Mechanotransduction in stretched osteocytes--temporal expression of immediate early and other genes. Biochem Biophys Res Commun 246(2):404–408. CrossRefGoogle Scholar
  16. 16.
    Inaba N, Kuroshima S, Uto Y, Sasaki M, Sawase T (2017) Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat. Biochem Biophys Rep 11:191–197. Google Scholar
  17. 17.
    Tan SD, Bakker AD, Semeins CM, Kuijpers-Jagtman AM, Klein-Nulend J (2008) Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun 369(4):1150–1154. CrossRefGoogle Scholar
  18. 18.
    Jilka RL, Noble B, Weinstein RS (2013) Osteocyte apoptosis. Bone 54(2):264–271. CrossRefGoogle Scholar
  19. 19.
    Yavropoulou MP, Yovos JG The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact 16(3):221–236Google Scholar
  20. 20.
    Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lanyon LE (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284(4):C934–C943. CrossRefGoogle Scholar
  21. 21.
    King JD, York SL, Saunders MM (2016) Design, fabrication and characterization of a pure uniaxial microloading system for biologic testing. Med Eng Phys 38(4):411–416. CrossRefGoogle Scholar
  22. 22.
    York SL, King JD, Pietros AS, Newby BZ, Sethu P (2015) Saunders MM Development of a microloading platform for in vitro mechanotransduction studies. In, Cham. Mechanics of Biological Systems and Materials, Volume 7. Springer International Publishing, pp 53-59Google Scholar
  23. 23.
    George EL, Truesdell SL, York SL, Saunders MM (2018) Lab-on-a-chip platforms for quantification of multicellular interactions in bone remodeling. Exp Cell Res 365(1):106–118. CrossRefGoogle Scholar
  24. 24.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676. doi:
  25. 25.
    Shah KS, York SL, Sethu P, Saunders MM (2013) Developing a microloading platform for applications in mechanotransduction research. In: Prorok BC, Barthelat F, Korach CS et al. (eds) Mechanics of Biological Systems and Materials, Volume 5, New York, NY, 2013//. Springer New York, pp 197-205Google Scholar
  26. 26.
    Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592. CrossRefzbMATHGoogle Scholar
  27. 27.
    Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans A Math Phys Eng Sci 241(835):379–397MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Paul BK, Abhinkar BS, Lee S (2011) High pressure hermetic compression seals for embedding elastomeric membrane microvalves in polymer microfluidic devices. Precis Eng 35(2):348–354. CrossRefGoogle Scholar
  29. 29.
    Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Adv Drug Deliv Rev 107:367–392. CrossRefGoogle Scholar
  30. 30.
    Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24(3):035017CrossRefGoogle Scholar
  31. 31.
    Petrova RV (2014) Introduction to Static Analysis Using SolidWorks Simulation. CRC Press, HobokenCrossRefGoogle Scholar
  32. 32.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238. CrossRefGoogle Scholar
  33. 33.
    Bonivtch AR, Bonewald LF, Nicolella DP (2007) Tissue strain amplification at the osteocyte lacuna: A microstructural finite element analysis. J Biomech 40(10):2199–2206. CrossRefGoogle Scholar
  34. 34.
    You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122(4):387–393CrossRefGoogle Scholar
  35. 35.
    Verbruggen SW, Vaughan TJ, McNamara LM (2012) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 9(75):2735–2744. CrossRefGoogle Scholar
  36. 36.
    Wang L, Dong J, Xian CJ (2015) Strain amplification analysis of an osteocyte under static and cyclic loading: A finite element study. Biomed Res Int 2015:14. Google Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe University of AkronAkronUSA

Personalised recommendations