Advertisement

Experimental Mechanics

, Volume 59, Issue 8, pp 1159–1170 | Cite as

Mechanically Regularized FE DIC for Heterogeneous Materials

  • R. NaylorEmail author
  • F. Hild
  • C. Fagiano
  • M. HirsekornEmail author
  • Y. Renollet
  • B. Tranquart
  • E. Baranger
Article
  • 91 Downloads

Abstract

In situ tensile tests in a scanning electron microscope (SEM) have been conducted on a 8-layer 5-harness satin carbon fibre and epoxy matrix composite to observe the first stages of damage at the scale of fibres and matrix. A speckle pattern based on a suspension of alumina particles was applied onto the surface of the specimen to facilitate the use of digital image correlation (DIC). Local and finite element (FE) DIC are compared on pictures acquired during the tensile tests, with and without a speckle pattern. FE DIC with mechanical regularization was found to be the only approach able to measure displacement fields at a fine enough resolution in both cases. This method, initially created for homogeneous materials, was then adapted to heterogeneous materials. First, a microstructure consistent mesh was created and used for correlation purposes. Second, the difference between the mechanical properties of the constituents is taken into account in the mechanical regularization. Last, the accuracy of the method is analysed. The adaptation presented herein was proved to be able to measure displacement fields in the matrix between fibres with an error of 10 nm (a fifth of a pixel) and to detect the initiation of the first damage mechanisms by means of the mechanical residuals.

Keywords

Digital image correlation Mechanical regularization Textile composites In-situ mechanical test Microscopic failure 

Notes

Acknowledgments

This work was funded by Safran Composites. The authors also thank D. Boivin and N. Horezan for all the fruitful discussions and advises concerning the optimal use of the SEM.

References

  1. 1.
    Spoltman MW, Bowerman RD, Edinger RL (1989) Composite aircraft propeller blade, US Patent 4,810,167Google Scholar
  2. 2.
    Daggumati S, De Baere I, Van Paepegem W, Degrieck J, Xu J, Lomov SV, Verpoest I (2010) Local damage in a 5-harness satin weave composite under static tension: Part I–experimental analysis. Compos Sci Technol 70(13):1926–1933Google Scholar
  3. 3.
    Gao F, Boniface L, Ogin SL, Smith PA, Greaves RP (1999) Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. observations of damage accumulation. Compos Sci Technol 59(1):123–136Google Scholar
  4. 4.
    Ivanov DS, Baudry F, Van Den Broucke B, Lomov SV, Xie H, Verpoest I (2009) Failure analysis of triaxial braided composite. Compos Sci Technol 69(9):1372–1380Google Scholar
  5. 5.
    Osada T, Nakai A, Hamada H (2003) Initial fracture behavior of satin woven fabric composites. Compos Struct 61(4):333–339Google Scholar
  6. 6.
    Yang L, Yan Y, Liu Y, Ran Z (2012) Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos Sci Technol 72(15):1818–1825. https://www.overleaf.com/project/5c4c93511913523b26fab11a Google Scholar
  7. 7.
    Lisle T, Bouvet C, Pastor ML, Rouault T, Margueres P (2015) Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cuts. J Mater Sci 50(18):6154–6170Google Scholar
  8. 8.
    Doitrand A, Fagiano C, Chiaruttini V, Leroy FH, Mavel A, Hirsekorn M (2015) Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven polymer matrix composites under quasi-static tensile loading. Compos Sci Technol 119:1–11Google Scholar
  9. 9.
    Koimtzoglou C, Dassios KG, Galiotis C (2009) Effect of fatigue on the interface integrity of unidirectional Cf-reinforced epoxy resin composites. Acta Mater 57(9):2800–2811Google Scholar
  10. 10.
    Herrera-Franco PJ, Drzal LT (1992) Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23(1):2–27Google Scholar
  11. 11.
    Lecomte-Grosbras P, Palush B, Brieu M, De Saxcé G, Sabatier L (2009) Interlaminar shear strain measurement on angle-ply laminate free edge using digital image correlation. Compos A: Appl Sci Manuf 40 (12):1911–1920Google Scholar
  12. 12.
    Leong M, Overgaard LCT, Thomsen OT, Lund E, Daniel IM (2012) Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Compos Struct 94(2):768–778Google Scholar
  13. 13.
    Fitoussi J, Meraghni F, Jendli Z, Hug G, Baptiste D (2005) Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos Sci Technol 65(14):2174–2188Google Scholar
  14. 14.
    Canal LP, González C, Molina-Aldareguía JM, Segurado J, LLorca J (2012) Application of digital image correlation at the microscale in fiber-reinforced composites. Compos A: Appl Sci Manuf 43(10):1630–1638Google Scholar
  15. 15.
    Mortell DJ, Tanner DA, McCarthy CT (2014) In-situ SEM study of transverse cracking and delamination in laminated composite materials. Compos Sci Technol 105:118–126Google Scholar
  16. 16.
    O’Dwyer DJ, O’Dowd NP, McCarthy CT (2014) In-situ SEM mechanical testing of miniature bonded joints. Int J Adhes Adhes 50:57–64Google Scholar
  17. 17.
    Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139Google Scholar
  18. 18.
    Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties–a review. Strain 42(2):69–80Google Scholar
  19. 19.
    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001Google Scholar
  20. 20.
    Kammers AD, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53(9):1743–1761Google Scholar
  21. 21.
    David C, Passieux JC, Bugarin F, David C, Périé JN, Robert L (2015) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mech 55(1):121–137Google Scholar
  22. 22.
    Brillaud J, Lagattu F (2002) Limits and possibilities of laser speckle and white-light image-correlation methods: Theory and experiments. Appl Opt 41(31):6603–6613Google Scholar
  23. 23.
    Mehdikhani M, Aravand M, Sabuncuoglu B, Callens MG, Lomov SV, Gorbatikh L (2016) Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Compos Struct 140:192–201Google Scholar
  24. 24.
    Li N, Guo S, Sutton MA (2011) Recent progress in e-beam lithography for sem patterning. In: MEMS and Nanotechnology, vol 2. Springer, pp 163–166Google Scholar
  25. 25.
    Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5(3):491–502Google Scholar
  26. 26.
    Tanaka Y, Naito K, Kishimoto S, Kagawa Y (2011) Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology 22(11):115704Google Scholar
  27. 27.
    Collette SA, Sutton MA, Miney P, Reynolds AP, Li X, Colavita PE, Scrivens WA, Luo Y, Sudarshan T, Muzykov P, et al. (2004) Development of patterns for nanoscale strain measurements: I. fabrication of imprinted Au webs for polymeric materials. Nanotechnology 15(12):1812–1817Google Scholar
  28. 28.
    Wang H, Xie H, Li Y, Zhu J (2012) Fabrication of micro-scale speckle pattern and its applications for deformation measurement. Meas Sci Technol 23(3):035402Google Scholar
  29. 29.
    Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47(1):51–62Google Scholar
  30. 30.
    Sutton MA, Mingqi C, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150Google Scholar
  31. 31.
    Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. European Journal of Mechanics 20:169–187zbMATHGoogle Scholar
  32. 32.
    Sun Y, Pang JHL, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363Google Scholar
  33. 33.
    Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin–Le Châtelier bands. Exp Mech 46(6):789–803Google Scholar
  34. 34.
    Mortazavi F (2013) Development of a global digital image correlation approach for fast high-resolution displacement measurements. Doctoral dissertation, École Polytechnique de MontréalGoogle Scholar
  35. 35.
    Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73(2):248–272MathSciNetzbMATHGoogle Scholar
  36. 36.
    Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Numer Methods Eng 92(6):531–550MathSciNetzbMATHGoogle Scholar
  37. 37.
    Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples: the equilibrium gap method as a mechanical filter. European Journal of Computational Mechanics/Revue Europeenne de Mé,canique Numériqué 18(3-4):285–306zbMATHGoogle Scholar
  38. 38.
    Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal Eng Des 48:330–343Google Scholar
  39. 39.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519Google Scholar
  40. 40.
    Correlated Solutions, Vic-2d. Reference Manual (2009)Google Scholar
  41. 41.
    Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631–660zbMATHGoogle Scholar
  42. 42.
    Sutton MA (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65(5):1–23Google Scholar
  43. 43.
    Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse problems 21(2):R1MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (disc). Opt Eng 40(8):1613–1620Google Scholar
  45. 45.
    Asp LE (1998) The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite. Compos Sci Technol 58(6):967–977Google Scholar
  46. 46.
    Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres. Mater Des 32(2):788–795Google Scholar
  47. 47.
    HexcelCorporation (1998) HexFlow®RTM 6 Product Data. http://www.hexcel.com/Resources/DataSheets/RTM-Data-Sheets/RTM6_global.pdf
  48. 48.
  49. 49.
    Maurin R, Davies P, Baral N, Baley C (2008) Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater 15(2):61–73Google Scholar
  50. 50.
    Herráez M, Fernández A, Lopes CS, González C (2016) Strength and toughness of structural fibres for composite material reinforcement. Phil Trans R Soc A 374(2071):1–11Google Scholar
  51. 51.
    Morelle XP, Chevalier J, Bailly C, Pardoen T, Lani F (2017) Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech Time-Depend Mater 21:419–454Google Scholar
  52. 52.
    Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787Google Scholar
  53. 53.
    Guery A, Latourte F, Hild F, Roux S (2013) Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation. Meas Sci Technol 25(1):15401Google Scholar
  54. 54.
    Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17(10):2613–2622Google Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.OneraChatillon CedexFrance
  2. 2.LMT (ENS Paris-Saclay/CNRS/University Paris-Saclay)Cachan CedexFrance
  3. 3.SAFRAN CompositesItteville CedexFrance

Personalised recommendations