Advertisement

Experimental Mechanics

, Volume 59, Issue 8, pp 1113–1125 | Cite as

On the Application of Xe+ Plasma FIB for Micro-fabrication of Small-scale Tensile Specimens

  • A.D. SmithEmail author
  • J. Donoghue
  • A. Garner
  • B. Winiarski
  • E. Bousser
  • J. Carr
  • J. Behnsen
  • T.L. Burnett
  • R. Wheeler
  • K. Wilford
  • P.J. Withers
  • M. Preuss
Article
  • 157 Downloads

Abstract

In order to perform site-specific mechanical studies to examine the contribution or interaction of a material constituent, a reliable methodology for the production of small-scale samples is required. With the high milling rates achievable with the newly developed Xe+ plasma FIB (PFIB), it is now possible to manufacture specimens approaching the smallest representative volume (SRV). In this study, a methodology has been developed that allows for the manufacture of mesoscale specimens approaching SRV to be tested in tension. It is demonstrated that yield and tensile strength measured in specimens of this scale are representative of bulk behaviour, of the properties measured the strain hardening exponent was found to be dependent on scale.

Keywords

Xe+ Plasma FIB-SEM Dual Beam Microscope In-situ Mechanical Testing Digital Image Correlation X-Ray Computed Tomography Finite Element Analysis SA508-4 N steel 

Notes

Acknowledgements

The authors would like to thank the EPSRC for funding through EP/J021172/1 and also acknowledge the assistance provided by the Manchester X-ray Imaging Facility, which was funded in part by the EPSRC (grants EP/F007906/1, EP/F001452/1 and EP/I02249X/1). This work was supported by the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1 and EP/P025498/1. E. Bousser would like to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through the Postdoctoral Fellowship program.

References

  1. 1.
    Wheeler JM, Raghavan R, Chawla V, Morstein M, Michler J (2014) Deformation of hard coatings at elevated temperatures. Surf Coat Technol 254:382–387.  https://doi.org/10.1016/j.surfcoat.2014.06.048 CrossRefGoogle Scholar
  2. 2.
    Kihara Y, Nagoshi T, Chang TFM, Hosoda H, Sato T, Sone M (2015) Tensile behavior of micro-sized specimen fabricated from nanocrystalline nickel film. Microelectron Eng 141:17–20.  https://doi.org/10.1016/j.mee.2015.01.001 CrossRefGoogle Scholar
  3. 3.
    Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS (2014) Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62:197–211.  https://doi.org/10.1016/j.actamat.2013.10.001 CrossRefGoogle Scholar
  4. 4.
    Kiener D, Hosemann P, Maloy SA, Minor AM (2011) In situ nanocompression testing of irradiated copper. Nat Mater 10:608–613.  https://doi.org/10.1038/nmat3055 CrossRefGoogle Scholar
  5. 5.
    Armstrong DEJ, Hardie CD, Gibson JSKL, Bushby AJ, Edmondson PD, Roberts SG (2015) Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials. J Nucl Mater 462:374–381.  https://doi.org/10.1016/j.jnucmat.2015.01.053 CrossRefGoogle Scholar
  6. 6.
    Reichardt A, Ionescu M, Davis J, Edwards L, Harrison RP, Hosemann P, Bhattacharyya D (2015) In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater 100:147–154.  https://doi.org/10.1016/j.actamat.2015.08.028 CrossRefGoogle Scholar
  7. 7.
    Hosemann P, Shin C, Kiener D (2015) Small scale mechanical testing of irradiated materials. J Mater Res FirstView:1, 26–15.  https://doi.org/10.1557/jmr.2015
  8. 8.
    Rafique M, Chae S, Kim Y-S (2016) Surface, structural and tensile properties of proton beam irradiated zirconium. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 368:120–128.  https://doi.org/10.1016/j.nimb.2015.12.001 CrossRefGoogle Scholar
  9. 9.
    Kiener D, Minor AM (2011) Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett 11:3816–3820.  https://doi.org/10.1021/nl201890s CrossRefGoogle Scholar
  10. 10.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(80):986–989.  https://doi.org/10.1126/science.1098993 CrossRefGoogle Scholar
  11. 11.
    Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 26:239–257.  https://doi.org/10.1016/j.ijplas.2009.06.005 CrossRefzbMATHGoogle Scholar
  12. 12.
    Kiener D, Motz C, Dehm G (2009) Micro-compression testing: A critical discussion of experimental constraints. Mater Sci Eng A 505:79–87.  https://doi.org/10.1016/j.msea.2009.01.005 CrossRefGoogle Scholar
  13. 13.
    Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars. Mater Sci Eng A 489:319–329.  https://doi.org/10.1016/j.msea.2007.12.038 CrossRefGoogle Scholar
  14. 14.
    Miyahara CK, Tada C, Uda T, Igata N (1985) The effects of grain and specimen sizes on mechanical properties of type 316 austenitic stainless steel. J Nucl Mater 30:1–5Google Scholar
  15. 15.
    Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724.  https://doi.org/10.1016/j.pmatsci.2011.01.005 CrossRefGoogle Scholar
  16. 16.
    Wheeler R, Pandey A, Shyam A, Tan T, Lara-Curzio E (2015) Small Scale Mechanical Characterization of Thin Foil Materials via Pin Load Microtesting. Exp Mech 55:1375–1387.  https://doi.org/10.1007/s11340-015-0020-6 CrossRefGoogle Scholar
  17. 17.
    Iqbal F, Ast J, Göken M, Durst K (2012) In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater 60:1193–1200.  https://doi.org/10.1016/j.actamat.2011.10.060 CrossRefGoogle Scholar
  18. 18.
    Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of Micrometer-Scale Single Crystals in Compression. Annu Rev Mater Res 39:361–386.  https://doi.org/10.1146/annurev-matsci-082908-145422 CrossRefGoogle Scholar
  19. 19.
    Schneider AS, Kiener D, Yakacki CM, Maier HJ, Gruber PA, Tamura N, Kunz M, Minor AM, Frick CP (2013) Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater Sci Eng A 559:147–158.  https://doi.org/10.1016/j.msea.2012.08.055 CrossRefGoogle Scholar
  20. 20.
    Kiener D, Grosinger W, Dehm G, Pippan R (2008) A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater 56:580–592.  https://doi.org/10.1016/j.actamat.2007.10.015 CrossRefGoogle Scholar
  21. 21.
    Xiao Y, Wehrs J, Ma H, Al-Samman T, Korte-Kerzel S, Goken M, Michler J, Spolenak R, Wheeler JM (2017) Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scr Mater 127:191–194.  https://doi.org/10.1016/j.scriptamat.2016.08.028 CrossRefGoogle Scholar
  22. 22.
    Smith NS, Skoczylas WP, Kellogg SM, Kinion DE, Tesch PP, Sutherland O, Aanesland A, Boswell RW (2006) High brightness inductively coupled plasma source for high current focused ion beam applications. J Vac Sci Technol B 24.  https://doi.org/10.1116/1.2366617
  23. 23.
    Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, Burke MG, Withers PJ (2016) Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy. 161:119–129.  https://doi.org/10.1016/j.ultramic.2015.11.001 CrossRefGoogle Scholar
  24. 24.
    Menon R, Nabhiraj PY (2015) High speed micro-fabrication using inductively coupled plasma ion source based focused ion beam system. Vacuum. 111:166–169.  https://doi.org/10.1016/j.vacuum.2014.10.014 CrossRefGoogle Scholar
  25. 25.
    Garnier A, Filoni G, Hrnčíř T, Hladík L (2015) Plasma FIB: Enlarge your field of view and your field of applications. Microelectron Reliab 55:2135–2141.  https://doi.org/10.1016/j.microrel.2015.07.016 CrossRefGoogle Scholar
  26. 26.
    Giannuzzi L, Smith N (2011) TEM Specimen Preparation with Plasma FIB Xe+ Ions. Microsc Microanal 17:646–647.  https://doi.org/10.1017/S1431927611004107 CrossRefGoogle Scholar
  27. 27.
    Kelley RD, Song K, Van Leer B, Wall D, Kwakman L (2013) Xe+ FIB Milling and Measurement of Amorphous Silicon Damage. Microsc Microanal 19:862–863.  https://doi.org/10.1017/S1431927613006302 CrossRefGoogle Scholar
  28. 28.
    ASTM Int. (2009) Standard Test Methods for Tension Testing of Metallic Materials. ASTM, West Conshohoken, pp 1–27.  https://doi.org/10.1520/E0008_E0008M-16A Google Scholar
  29. 29.
    Giannuzzi LA, Stevie FA (2005) Introduction To Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer, New York.  https://doi.org/10.1007/b101190 CrossRefGoogle Scholar
  30. 30.
    Gianola DS, Eberl C (2009) Micro- and nanoscale tensile testing of materials. Jom. 61:24–35.  https://doi.org/10.1007/s11837-009-0037-3 CrossRefGoogle Scholar
  31. 31.
    Da Fonseca JQ, Mummery PMM, Withers PJ, Materials M, Centre S, Street G, Manchester M (2005) Full-field strain mapping by optical correlation of micrographs. J Microsc 218:9–21MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gioacchino F, Quinta da Fonseca J (2012) Plastic Strain Mapping with Sub-micron Resolution Using Digital Image Correlation. Exp Mech 53:743–754.  https://doi.org/10.1007/s11340-012-9685-2 CrossRefGoogle Scholar
  33. 33.
    Echlin MP, Stinville JC, Miller VM, Lenthe WC, Pollock TM (2016) Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Mater 114:164–175.  https://doi.org/10.1016/j.actamat.2016.04.057 CrossRefGoogle Scholar
  34. 34.
    Jiang J, Yang J, Zhang T, Zou J, Wang Y, Dunne FPE, Britton TB (2016) Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys. Acta Mater 117:333–344.  https://doi.org/10.1016/j.actamat.2016.07.023 CrossRefGoogle Scholar
  35. 35.
    McMurtrey MD, Was GS, Cui B, Robertson I, Smith L, Farkas D (2014) Strain localization at dislocation channel–grain boundary intersections in irradiated stainless steel. Int J Plast 56:219–231.  https://doi.org/10.1016/j.ijplas.2014.01.001 CrossRefGoogle Scholar
  36. 36.
    Winiarski B, Schajer GS, Withers PJ (2011) Surface Decoration for Improving the Accuracy of Displacement Measurements by Digital Image Correlation in SEM. Exp Mech 52:793–804.  https://doi.org/10.1007/s11340-011-9568-y CrossRefGoogle Scholar
  37. 37.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  38. 38.
    Dieter GE (1961) Mechanical Metallurgy. McGraw Hill, New YorkCrossRefGoogle Scholar
  39. 39.
    Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A 525:68–77.  https://doi.org/10.1016/j.msea.2009.06.031 CrossRefGoogle Scholar
  40. 40.
    Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr Mater 59:627–630.  https://doi.org/10.1016/j.scriptamat.2008.05.031 CrossRefGoogle Scholar
  41. 41.
    Di Gioacchino F, Quinta da Fonseca JJ (2015) An experimental study of the polycrystalline plasticity of austenitic stainless steel. Int J Plast 74:92–109.  https://doi.org/10.1016/j.ijplas.2015.05.012 CrossRefGoogle Scholar
  42. 42.
    Lunt D, Busolo T, Xu X, Fonseca JQ, Preuss M (2017) Effect of nanoscale α2 precipitation on strain localisation in a two­-phase Ti-alloy. Acta Mater 129:72–82.  https://doi.org/10.1016/j.actamat.2017.02.068 CrossRefGoogle Scholar
  43. 43.
    Orozco-Caballero A, Lunt D, Robson JD, Quinta da Fonseca J (2017) How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation study. Acta Mater 133:367–379.  https://doi.org/10.1016/j.actamat.2017.05.040 CrossRefGoogle Scholar
  44. 44.
    Singh DRP, Chawla N, Tang G, Shen YL (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58:6628–6636.  https://doi.org/10.1016/j.actamat.2010.08.025 CrossRefGoogle Scholar
  45. 45.
    Shin C, Lim S, Jin HH, Hosemann P, Kwon J (2015) Specimen size effects on the weakening of a bulk metastable austenitic alloy. Mater Sci Eng A 622:67–75.  https://doi.org/10.1016/j.msea.2014.11.004 CrossRefGoogle Scholar
  46. 46.
    Keller C, Hug E, Retoux R, Feaugas X (2010) TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech Mater 42:44–54.  https://doi.org/10.1016/j.mechmat.2009.09.002 CrossRefGoogle Scholar
  47. 47.
    Kumar K, Pooleery A, Madhusoodanan K, Singh RN, Chatterjee A, Dutta BK, Sinha RK (2016) Optimisation of thickness of miniature tensile specimens for evaluation of mechanical properties. Mater Sci Eng A 675:32–43.  https://doi.org/10.1016/j.msea.2016.08.032 CrossRefGoogle Scholar
  48. 48.
    Keller C, Hug E, Feaugas X (2011) Microstructural size effects on mechanical properties of high purity nickel. Int J Plast 27:635–654.  https://doi.org/10.1016/j.ijplas.2010.08.002 CrossRefzbMATHGoogle Scholar
  49. 49.
    Keller C, Hug E (2017) Kocks-Mecking analysis of the size effects on the mechanical behavior of nickel polycrystals. Int J Plast 98:106–122.  https://doi.org/10.1016/j.ijplas.2017.07.003 CrossRefGoogle Scholar
  50. 50.
    Keller C, Hug E, Habraken AM, Duchêne L (2015) Effect of stress path on the miniaturization size effect for nickel polycrystals. Int J Plast 64:26–39.  https://doi.org/10.1016/j.ijplas.2014.07.001 CrossRefGoogle Scholar
  51. 51.
    El Kajbaji M, Thibault-Desseaux J, Martinez-Hernandez M, Jacques A, George A (1987) Deformation mechanisms of Σ = 9 bicrystals of silicon. Rev Phys ApplGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.School of MaterialsThe University of ManchesterManchesterUK
  2. 2.Thermo Fisher ScientificFEIBrno-CernoviceCzech Republic
  3. 3.Polytechnique MontréalUniversity of MontrealMontréalCanada
  4. 4.Micro Testing Solutions LLCHilliardUSA
  5. 5.Rolls-Royce plcDerbyUK
  6. 6.Henry Royce Institute, School of MaterialsThe University of ManchesterManchesterUK

Personalised recommendations