Experimental Mechanics

, Volume 59, Issue 5, pp 611–628 | Cite as

Laser-Driven Flyers and Nanosecond-Resolved Velocimetry for Spall Studies in Thin Metal Foils

  • D. D. MallickEmail author
  • M. Zhao
  • J. Parker
  • V. Kannan
  • B. T. Bosworth
  • D. Sagapuram
  • M. A. Foster
  • K. T. Ramesh


We describe a laser-launched micro-flyer apparatus designed for spall strength measurement. The launcher uses a single pulse from a pulsed laser that is stretched in time to nominally 20 nanoseconds using an optical ring cavity, while inexpensive multi-lens arrays are used to spatially homogenize the beam. The velocimetry technique that we developed for the experiment provides the required sub-nanosecond time resolution. We demonstrate the capability of the apparatus to interrogate the spall strength of AZ31B Mg alloy thin foils, a material system with potential applications as a lightweight protection material. Numerical simulations and fractography are very useful to determine the quality of the experimental data and help to interpret our results. The simulations and fractography analyses of the experiments suggest that the short shock pulse duration in the experiment causes incipient spallation. The short pulse also likely introduces stochasticity to the measured spall strength through limited activation of failure mechanisms within the samples. The shocked AZ31B Mg alloy has spall strengths that are greater than previously reported figures for fine grained Mg alloys, likely because the laser based system achieves higher strain rates than in prior work on this material.


PDV Photon doppler velocimetry Interferometry Velocimetry Laser-driven flyer-plates Spall strength AZ31B Magnesium alloys Shock 



We thank the Dlott group at University of Illinois Urbana Champagne for their guidance in developing the apparatus based on their experiences pioneering their facility. We also thank Dr. Joseph Zaug for his mentorship of D.D.M. and general assistance with facility development. We thank Dr. Jeff Lloyd and Dr. Rich Becker for providing thought provoking conversations while analyzing these results and for assistance with the simulations. Finally, we thank the Hopkins Extreme Materials Institute for their support, specifically Dr. Amy Dagro, Matt Shaeffer, Dr. Andrew Leong, Hao Sheng, Steve Lavenstein, Dr. David Eastman and Dr. Ravi Shivaraman. This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.


  1. 1.
    Fowles GR, Duvall GE, Asay J, Bellamy P, Feistmann F, Grady D, Michaels T, Mitchell R (1970) Gas gun for impact studies. Rev Sci Instrum 41(7):984. CrossRefGoogle Scholar
  2. 2.
    Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, BerlinGoogle Scholar
  3. 3.
    Fox JA, Barr DN (1973) Laser-induced shock e.ects in Plexiglas and 6061-T6 aluminum. Appl Phys Lett 22(11):594CrossRefGoogle Scholar
  4. 4.
    Eliezer S, Gilath I, Bar-Noy T (1990) Laser-induced spall in metals: Experiment and simulation. J Appl Phys 67(2):715CrossRefGoogle Scholar
  5. 5.
    Gilath I, Eliezer S, Dariel M, Kornblit L (1988) Brittle-to-ductile transition in laser-induced spall at ultrahigh strain rate in 6061-T6 aluminum alloy. Appl Phys Lett 52(15):1207CrossRefGoogle Scholar
  6. 6.
    Moshe E, Eliezer S, Dekel E, Ludmirsky A, Henis Z, Werdiger M, Goldberg I, Eliaz N, Eliezer D (1998) An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 10 7 s- 1. J Appl Phys 83(8):4004CrossRefGoogle Scholar
  7. 7.
    Cottet F, Boustie M (1989) Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations. J Appl Phys 66(9):4067CrossRefGoogle Scholar
  8. 8.
    Hu L, Miller P, Wang J (2009) High strain-rate spallation and fracture of tungsten by laserinduced stress waves. Mater Sci Eng A 504(1-2):73CrossRefGoogle Scholar
  9. 9.
    Ripin BH, Decoste R, Obenschain SP, Bodner SE, McLean EA, Young FC, Whitlock RR, Armstrong CM, Grun J, Stamper JA, Gold SH, Nagel DJ, Lehmberg RH, McMahon JM (1980) Laser-Plasma Interaction and Ablative Acceleration of Thin Foils at 1012-1015 W/cm2. Phys Fluids 23(5):1012. CrossRefGoogle Scholar
  10. 10.
    Obenschain SP, Whitlock RR, McLean EA, Ripin BH, Price RH, Phillion DW, Campbell EM, Rosen MD, Auerbach JM (1983) Uniform Ablative Acceleration of Targets by Laser Irradiation at 1014 W/cm22. Phys Rev Lett 50(1):44. CrossRefGoogle Scholar
  11. 11.
    Sheffield SA, Rogers JW, Castaneda JN (1986) Velocity measurements of laser-driven flyers backed by high impedance windowsGoogle Scholar
  12. 12.
    Trott WM, Meeks KD (1990) Highpower Nd:glass laser transmission through optical fibers and its use in acceleration of thin foil targets. J Appl Phys 67(7):3296. CrossRefGoogle Scholar
  13. 13.
    Paisley DL, Warnes RH, Kopp RA (1992) Proceedings of the APS 1991 Topical Conference on Shock Compression of Condensed Matter, 825–828.
  14. 14.
    Frank AM, Trott WM (1996) AIP Conference Proceedings- Shock Compression of Condensed Matter 370(1):1209.
  15. 15.
    Fujiwara H, Brown KE, Dlott DD (2009) AIP Conference Proceedings- Shock Compression of Condensed Matter 1195:1317.
  16. 16.
    Fujiwara H, Brown KE, Dlott DD (2009) High-Energy Flat-top Beams for laser launching using a gaussian mirror. Appl Opt 49(19):3723. CrossRefGoogle Scholar
  17. 17.
    Fujiwara H, Brown KE, Dlott DD (2011) AIP Conference Proceedings- Shock COmpression of Condensed Matter 1426:382.
  18. 18.
    Brown KE, Shaw WL, Zheng X, Dlott DD (2012) Simplified laser-driven flyer plates for shock compression science. Rev Sci Instrum 83(103901):1. Google Scholar
  19. 19.
    Curtis AD, Banishev AA, Shaw WL, Dlott DD (2014) Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry. Rev Sci Instrum 85(043908):1. Google Scholar
  20. 20.
    Banishev AA, Shaw WL, Bassett WP, Dlott DD (2016) High-speed laser-launched flyer impacts studied with ultrafast photography and velocimetry. J Dyn Behav Mater 2:194. CrossRefGoogle Scholar
  21. 21.
    Paisley DL, Warnes RH, Kopp RA (1992) Proceedings of the APS 1991 Topical Conference on Shock Compression of Condensed Matter 825–828.
  22. 22.
    Vogler T, Alexander S, Thornhill T, Reinhart W (2011) Sandia Technical Report SAND2011-6700, pp SAND2011–6700Google Scholar
  23. 23.
    Chhabildas L, Sutherland H, Asay J (1979) A velocity interferometer technique to determine shearwave particle velocity in shock loaded solids. J Appl Phys 50(8):5196CrossRefGoogle Scholar
  24. 24.
    Meyers M (2007) Dynamic behavior of materials. Wiley, New YorkzbMATHGoogle Scholar
  25. 25.
    Warnes RH, Paisley DL, Tonks DL (1996) AIP Conference Proceedings- Shock COmpression of Condensed Matter, 1995 370(1):495.
  26. 26.
    Robbins DL, Gehr RJ, Harper RW, Rupp TD, SHeffield SA, STahl DB (2000) AIP Conference Proceedings- Shock COmpression of Condensed Matter, 1999 505(1):1199.
  27. 27.
    Alexander DJ, Robbins DL, Sheffield SA (2000) Los Alamos National Lab. NM (US) LA-UR-00-3288:1Google Scholar
  28. 28.
    Paisley DL, Swift DC, Johnson RP, Kopp RA, Kyrala GA (2002) LaserLaunched flyer plates and direct laser shocks for dynamic material property measurements. AIP Conference Proceedings- Shock COmpression of Condensed Matter 2001:1343–1346. CrossRefGoogle Scholar
  29. 29.
    Swift DC, Niemczura JG, Paisley DL, Johnson RP, Luo S, IV TET (2005) Laserlaunched flyer plates for shock physics experiments. Rev Sci Instrum 093907(9):1. Google Scholar
  30. 30.
    Paisley DL, Luo S, Greenfield S, Koskelo A (2008) Laser-launched flyer plate and confined laser ablation for shock wave loading: Validation and applications. Rev Sci Instrum 023902(2):1. Google Scholar
  31. 31.
    de Resseguier T, He H, Berterretche P (2005) Use of laser-accelerated foils for impact study of dynamic material behaviour. Int J Impact Eng 31(8):945. CrossRefGoogle Scholar
  32. 32.
    Peralta P, DiGiacomo S, Hashemian S, Luo S, Paisley DL, Dickerson R, Loomis E, Byler D, McClellan KJ, D’Armas H (2009) Characterization of Incipient Spall Damage in Shocked Copper Multicrystals. Int J Damage Mech 18(4):393. CrossRefGoogle Scholar
  33. 33.
    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo SN, Greenfield S, Byler D, Paisley DL, McClennan KJ, Koskelo A, Dickerson R (2010) Statistics of weak grain boundaries for spall damage in polycrystalline copper. Scr Mater 63(12):1065. CrossRefGoogle Scholar
  34. 34.
    Wang H, Wang Y (2017) Laser-driven flyer application in thin film dissimilar materials welding and spalling. Opt Lasers Eng 97:1. CrossRefGoogle Scholar
  35. 35.
    Farbaniec L, Williams CL, Kecskes L, Ramesh KT, Becker R (2016) Microstructural effects on the spall properties of ECAE-processed AZ31B magnesium alloy. Int J Impact Eng 98:34CrossRefGoogle Scholar
  36. 36.
    Voelkel R, Weible KJ (2008) Optical Fabrication, Testing, and Metrology III, vol. 7102 (International Society for Optics and Photonics), vol. 7102, p. 71020JGoogle Scholar
  37. 37.
    Trott WM, Setchell RE, Castaneda JN, Berry DM (2001) Laser Beam Shaping II, vol. 4443 (International Society for Optics and Photonics, vol. 4443, p. 166–178Google Scholar
  38. 38.
    Kojima J, Nguyen QV (2002) . Appl Opt 41(30):6360CrossRefGoogle Scholar
  39. 39.
    Mallick D, Shaeffer M, Dean S, Ramesh KT (2017) Laser pulse-stretching with multiple optical ring cavities. Procedia Eng 204:215CrossRefGoogle Scholar
  40. 40.
    Strand O, Goosman D, Martinez C, Whitworth T, Kuhlow W (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instr 77(8):08318:1CrossRefGoogle Scholar
  41. 41.
    Klopp R, Clifton R, Shawki T (1985) Pressure-shear impact and the dynamic viscoplastic response of metals. Mech Mater 4(3): 375CrossRefGoogle Scholar
  42. 42.
    Williams C, Farbaniec L, Kecskes L, Bradley J (2017) AIP Conference Proceedings, vol. 1793 (AIP Publishing), vol. 1793, p. 100011Google Scholar
  43. 43.
    Yu X, Li T, Li L, Liu S, Li Y (2017) Influence of initial texture on the shock property and spall behavior of magnesium alloy AZ31B. Mater Sci Eng A 700:25CrossRefGoogle Scholar
  44. 44.
    Lässig T, Bagusat F, Pfändler S, Gulde M, Heunoske D, Osterholz J, Stein W, Nahme H, May M (2017) Investigations on the spall and delamination behavior of UHMWPE composites. Compos Struct 182:590CrossRefGoogle Scholar
  45. 45.
    Hazell P, Appleby-Thomas G, Wielewski E, Stennett C, Siviour C (2012) The influence of microstructure on the shock and spall behaviour of the magnesium alloy, Elektron 675. Acta Materialia 60(17):6042CrossRefGoogle Scholar
  46. 46.
    Mallick D, Zhao M, Bosworth B, Schuster B, Foster M, Ramesh KT (2018) A simple dual-beam time-multiplexed photon doppler velocimeter for pressure-shear plate impact experiments. Exp Mech:1–9Google Scholar
  47. 47.
    Dolan D (2010) Accuracy and precision in photonic doppler velocimetry. Rev Sci Instr 81:5CrossRefGoogle Scholar
  48. 48.
    Kettenbeil C, Mello M, Bischann M, Ravichandran G (2018) Heterodyne transverse velocimetry for pressure-shear plate impact experiments. J Appl Phys 123:12CrossRefGoogle Scholar
  49. 49.
    Moro EA, Briggs ME, Hull LM (2013) Defining parametric dependencies for the correct interpretation of speckle dynamics in photon Doppler velocimetry. Appl Opt 52(36):8661CrossRefGoogle Scholar
  50. 50.
    Ao T, Dolan D (2010) Sandia Technical Report, pp SAND2010–3628Google Scholar
  51. 51.
    Luo J, Bai J, He P, Ying K (2004) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 51(9)Google Scholar
  52. 52.
    Sagapuram D, Efe M, Moscoso W, Chandrasekar S, Trumble KP (2013) Controlling texture in magnesium alloy sheet by shear-based deformation processing. Acta Materialia 61(18):6843CrossRefGoogle Scholar
  53. 53.
    Sagapuram D, Efe M, Trumble KP, Chandrasekar S (2016) Flow transitions and flow localization in large-strain deformation of magnesium alloy. Mater Sci Eng A 659:295. CrossRefGoogle Scholar
  54. 54.
    Garkushin G, Razorenov S, Krasnoveikin V, Kozulin A, Skripnyak V (2015) Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions. Phys Solid State 57(2):337CrossRefGoogle Scholar
  55. 55.
    Cabral A, Rebordao J (2007) Accuracy of frequency-sweeping interferometry for absolute distance metrology. Opt Eng 46:7CrossRefGoogle Scholar
  56. 56.
    Remington T, Hahn E, Zhao S, Flanagan R, Mertens J, Sabbaghianrad S, Langdon TG, Wehrenberg C, Maddox B, Swift D, et al. (2018) Spall strength dependence on grain size and strain rate in tantalum. Acta Materialia 158:313CrossRefGoogle Scholar
  57. 57.
    Nichols A, Dawson D (2017) Livermore Technical Reports Tech. Rep LLNL-sm-726137Google Scholar
  58. 58.
    Steinberg D (1996) Equation of state and strength properties of selected materials, 1996, lawrence livermore national laboratory, Tech. rep. UCRL-MA-106439Google Scholar
  59. 59.
    Marsh SP (1980) LASL shock Hugoniot data, vol 5. Univ of California Press, CaliforniaGoogle Scholar
  60. 60.
    Kanel’ G (2001) Distortion of the wave profiles in an elastoplastic body upon spalling. J Appl Mech Techn Phys 42:358CrossRefzbMATHGoogle Scholar
  61. 61.
    Chen DN, Yu YY, Yin ZH, Wang HR, Liu GQ (2005) On the validity of the traditional measurement of spall strength. Int J Impact Eng 31(7):811CrossRefGoogle Scholar
  62. 62.
    Callaghan K, Becker R (2018) AIP Conference Proceedings, vol. 1979 (AIP Publishing), vol. 1979, p. 070010Google Scholar
  63. 63.
    Wilkerson J, Ramesh KT (2014) A dynamic void growth model governed by dislocation kinetics. J Mech Phys Solids 70:262MathSciNetCrossRefGoogle Scholar
  64. 64.
    Wilkerson J (2017) On the micromechanics of void dynamics at extreme rates. Int J Plasticity 95:21CrossRefGoogle Scholar
  65. 65.
    Wilkerson JW, Ramesh KT (2016) Unraveling the anomalous grain size dependence of cavitation. Phys Rev Lett 117(21):215503CrossRefGoogle Scholar
  66. 66.
    Turneaure SJ, Renganathan P, Winey J, Gupta Y (2018) Twinning and dislocation evolution during shock compression and release of single crystals: real-time x-ray diffraction. Phys Rev Lett 120(26):265503CrossRefGoogle Scholar
  67. 67.
    de Rességuier T, Hemery S, Lescoute E, Villechaise P, Kanel G, Razorenov S (2017) Spall fracture and twinning in laser shock-loaded single-crystal magnesium. J Appl Phys 121(16):165104CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Hopkins Extreme Materials InstituteJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Lethal Mechanisms, Weapons and Materials Research DirectorateUS Army Research LaboratoryAberdeen Proving GroundUSA
  4. 4.US Army Combat Capabilities Development Command Soldier CenterNatickUSA
  5. 5.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  6. 6.Texas A&M UniversityCollege StationUSA

Personalised recommendations