Experimental Mechanics

, Volume 59, Issue 5, pp 775–790 | Cite as

Novel Capability for Microscale In-situ Imaging of Temperature and Deformation Fields under Dynamic Loading

  • A. Keyhani
  • R. Yang
  • M. ZhouEmail author


To understand the mesoscale mechanisms responsible for the behavior of heterogeneous materials and to validate models, it is important to experimentally measure the deformation and temperature fields at the microstructure level. So far, there has been no methods that can yield such measurements simultaneously for dynamic experiments. Here, we report the development of a novel capability for simultaneous time- and space-resolved recording of both fields over the same microstructure area of a sample with micron-level spatial resolutions and microsecond time resolutions. Referred to as MINTED (Microscale In-situ Imaging of Dynamic Temperature and Deformation Fields), the system cohesively integrates a high-speed visible light (VL) camera and a state-of-the-art high-speed infrared (IR) camera via a custom-designed dichroic beam splitter-lens assembly. The combined VL and IR images allow the deformation fields to be obtained through digital image correlation (DIC) and the temperature fields over the same area to be obtained through pixel-level calibration of the differing emissivities of heterogeneous constituents in microstructures. Experiments are conducted on granular sucrose in a Kolsky bar [or split-Hopkinson pressure bar (SHPB)] environment, yielding both microstructure level fields along with overall material response. The strain and temperature fields provide detailed first-time insight into the processes of fracture, friction, shear localization, and hotspot development in the microstructures.


Dynamic thermo-mechanical response High-speed visible and infrared imaging Split-Hopkinson pressure bar (SHPB) Heterogeneous materials (HM) Sucrose 



The authors gratefully acknowledge support from the Air Force Office of Scientific Research through grant FA9550-15-1-0499 (Dr. Martin Schmidt). Experiments were performed at the Dynamic Property Research Laboratory (DPRL) at Georgia Tech.


  1. 1.
    Hartley KA, Duffy J, Hawley RH (1987) Measurement of the temperature profile during shear band formation in steels deforming at high strain rates. J Mech Phys Solids 35(3):283–301.
  2. 2.
    Marchand A, Duffy J (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids 36(3):251–283.
  3. 3.
    Zhou M, Rosakis AJ, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44(6):981–1006.
  4. 4.
    Guduru PR, Rosakis AJ, Ravichandran G (2001) Dynamic shear bands: an investigation using high speed optical and infrared diagnostics. Mech Mater 33(7):371–402. CrossRefGoogle Scholar
  5. 5.
    Li Z, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38(20):3549–3562. CrossRefzbMATHGoogle Scholar
  6. 6.
    Li Z, Lambros J (2000) Dynamic thermomechanical behavior of fiber reinforced composites. Compos A: Appl Sci Manuf 31(6):537–547. CrossRefGoogle Scholar
  7. 7.
    Goretta KC, Park ET, Koritala RE, Cuber MM, Pascual EA, Chen N, de Arellano-López AR, Routbort JL (1998) Thermomechanical response of polycrystalline BaZrO3. Physica C 309(3):245–250.
  8. 8.
    Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced martensitic transformation in a Ti-Ni alloy. Mater Sci Eng 74(1):75–84. CrossRefGoogle Scholar
  9. 9.
    McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal-mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. Mater Sci Eng A 167(1):51–56. CrossRefGoogle Scholar
  10. 10.
    Field J, Bourne N, Palmer S, Walley S, Sharma J, Beard B (1992) Hot-spot ignition mechanisms for explosives and propellants [and discussion]. Philos Trans R Soc London A 339(1654):269–283.
  11. 11.
    Field JE, Swallowe GM, Heavens SN (1982) Ignition mechanisms of explosives during mechanical deformation. Proc R Soc London A 382(1782):231–244.
  12. 12.
    Tarver CM, Chidester SK, Nichols AL (1996) Critical conditions for impact- and shock-induced hot spots in solid explosives. J Phys Chem 100(14):5794–5799. CrossRefGoogle Scholar
  13. 13.
    Winter RE, Field JE (1975) The role of localized plastic flow in the impact initiation of explosives. Proc R Soc London A 343(1634):399–413.
  14. 14.
    Guirguis RH (2000) Ignition due to macroscopic shear. AIP Conf Proc 505(1):647–650.
  15. 15.
    Skidmore C, Phillips D, Asay B, Idar D, Howe P, Bolme D (2000) Microstructural effects in PBX 9501 damaged by shear impact. AIP Conf Proc 505(1):659–662.
  16. 16.
    Menikoff R (2005) Elastic-plastic response of HMX. Research highlights.Google Scholar
  17. 17.
    Ravindran S, Tessema A, Kidane A (2017) Multiscale damage evolution in polymer bonded sugar under dynamic loading. Mech Mater 114:97–106. CrossRefGoogle Scholar
  18. 18.
    Bloomquist D, Sheffield S (1981) Shock-compression temperature rise in polymethyl methacrylate determined from resistivity of embedded copper foils. Appl Phys Lett 38(3):185–187. CrossRefGoogle Scholar
  19. 19.
    Bloomquist D, Sheffield S (1980) Thermocouple temperature measurements in shock-compressed solids. J Appl Phys 51(10):5260–5266. CrossRefGoogle Scholar
  20. 20.
    Boboridis K, Obst AW (2003) A high-speed four-channel infrared pyrometer. AIP Conf Proc 684(1):759–764.
  21. 21.
    Long DA (1977) Raman spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Yuan V, Bowman JD, Funk D, Morgan G, Rabie R, Ragan C, Quintana J, Stacy H (2005) Shock temperature measurement using neutron resonance spectroscopy. Phys Rev Lett 94(12):125504. CrossRefGoogle Scholar
  23. 23.
    Dolan DH, Ao T, Seagle CT (2013) Reflectance thermometry in dynamic compression experiments. AIP Conf Proc 1552(1):767–770.
  24. 24.
    Dolan DH, Seagle CT, Ao T (2013) Dynamic temperature measurements with embedded optical sensors. SANDIA report no SAND2013-8203.Google Scholar
  25. 25.
    Coffey C, Jacobs S (1981) Detection of local heating in impact or shock experiments with thermally sensitive films. J Appl Phys 52(11):6991–6993. CrossRefGoogle Scholar
  26. 26.
    Zehnder AT, Rosakis AJ (1991) On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J Mech Phys Solids 39(3):385-415.
  27. 27.
    Costin L, Crisman E, Hawley RH, Duffy J (1980) On the localisation of plastic flow in mild steel tubes under dynamic torsional loading. Proc 2nd Conf mechanical properties of materials at high rates of strain, Oxford, England, pp 90–100.Google Scholar
  28. 28.
    Soudre-Bau L, Meshaka Y, Parent G, Boulet P, Le Corre B, Jeandel G (2013) Combined temperature and deformation measurement during glass forming in a real scale setup. Exp Mech 53(9):1773–1781. CrossRefGoogle Scholar
  29. 29.
    Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography. Mech Mater 43(11):654–670. CrossRefGoogle Scholar
  30. 30.
    Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Mater Sci Eng A 501(1):52–60. CrossRefGoogle Scholar
  31. 31.
    Bertram Hopkinson FRS (1914) A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Philos Trans R Soc London A 213(497-508):437–456.
  32. 32.
    Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62(11):676Google Scholar
  33. 33.
    Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179.
  34. 34.
    Staab GH, Gilat A (1991) A direct-tension split Hopkinson bar for high strain-rate testing. Exp Mech 31(3):232–235. CrossRefGoogle Scholar
  35. 35.
    Gilat A, Cheng C-S (2000) Torsional split Hopkinson bar tests at strain rates above 104s−1. Exp Mech 40(1):54–59.
  36. 36.
    Hartley K, Duffy J, Hawley R (1985) The torsional Kolsky (split-Hopkinson) bar. Metals handbook 8:218–228.Google Scholar
  37. 37.
    Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41(3):252–260. CrossRefGoogle Scholar
  38. 38.
    Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867. CrossRefGoogle Scholar
  39. 39.
    Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802-060839.
  40. 40.
    Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76(9):1268–1276. CrossRefGoogle Scholar
  41. 41.
    Wang QZ, Feng F, Ni M, Gou XP (2011) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. CrossRefGoogle Scholar
  42. 42.
    Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202.
  43. 43.
    Bacon C (1998) An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Exp Mech 38(4):242–249. CrossRefGoogle Scholar
  44. 44.
    Bacon C (1999) Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three-dimensional effects. Int J Impact Eng 22(1):55–69.
  45. 45.
    Frew D, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41(1):40–46. CrossRefGoogle Scholar
  46. 46.
    Song B, Chen W (2004) Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Exp Mech 44(3):300–312. CrossRefGoogle Scholar
  47. 47.
    Othman R (2018) The Kolsky-Hopkinson bar machine: selected topics. Springer International Publishing, Cham.Google Scholar
  48. 48.
    Lindholm US (1964) Some experiments with the split hopkinson pressure bar. J Mech Phys Solids 12(5):317–335.
  49. 49.
    Noble JP, Goldthorpe BD, Church P, Harding J (1999) The use of the Hopkinson bar to validate constitutive relations at high rates of strain. J Mech Phys Solids 47(5):1187–1206.
  50. 50.
    Chen JJ, Guo BQ, Liu HB, Liu H, Chen PW (2014) Dynamic Brazilian test of brittle materials using the Split Hopkinson pressure bar and digital image correlation. Strain 50(6):563–570. CrossRefGoogle Scholar
  51. 51.
    Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84(2):025102. CrossRefGoogle Scholar
  52. 52.
    Yeager JD, Higginbotham Duque AL, Shorty M, Bowden PR, Stull JA (2018) Development of inert density mock materials for HMX. J Energ Mater 36(3):253–265.
  53. 53.
    Ramos K, Bahr D (2007) Mechanical behavior assessment of sucrose using nanoindentation. J Mater Res 22(7):2037–2045. CrossRefGoogle Scholar
  54. 54.
    Hardman J, Lilley B (1970) Deformation of particles during briquetting. Nature 228(5269):353. CrossRefGoogle Scholar
  55. 55.
    Huffine CL (1953) A study of the bonding and cohesion achieved in the compression of particulate materials. Columbia University, New York City.Google Scholar
  56. 56.
    Bridgman PW (1952) Physics of high pressure. Bell, London.Google Scholar
  57. 57.
    Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122. CrossRefGoogle Scholar
  58. 58.
    Pan B (2009) Reliability-guided digital image correlation for image deformation measurement. Appl Opt 48(8):1535–1542. CrossRefGoogle Scholar
  59. 59.
    Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46(3):033601. CrossRefGoogle Scholar
  60. 60.
    Rubino V, Rosakis AJ, Lapusta N (2017) Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat Commun 8:15991. CrossRefGoogle Scholar
  61. 61.
    Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation. Meas Sci Technol 20(9):095703. CrossRefGoogle Scholar
  62. 62.
    Keyhani A, Kim S, Horie Y, Zhou M (2018) Energy dissipation in polymer-bonded explosives with various levels of constituent plasticity and internal friction. Comput Mater Sci 159:136–149. CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.The George W. Woodruff School of Mechanical Engineering, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations