Advertisement

Experimental Mechanics

, Volume 59, Issue 5, pp 599–609 | Cite as

Effect of Particle Mass Fraction on the Multiscale Dynamic Failure Behavior of Particulate Polymer Composites

  • S. Ravindran
  • V. Gupta
  • A. Tessema
  • A. KidaneEmail author
Article
  • 154 Downloads

Abstract

In this study, the effect of particle mass fraction on the dynamic multiscale behavior of particulate polymer composite is investigated. High spatiotemporal resolution digital image correlation-based experiments are conducted to understand the local deformation and the failure mechanisms. The deformation fields at different length scales are compared to each other to understand the link between macroscaleand mesoscale behavior. All the experiments are carried out on polymer bonded sugar, a well-known mechanical simulant of polymer bonded explosives, with varying particle mass fraction. The transition of the soft binder dominated stress-strain behavior to a quasi-brittle type behavior was observed as the particle mass fraction is increased. The mesoscale experiments show that in samples with lower mass fraction, the deformation is mainly controlled by the binder. Whereas, at a higher mass fraction, the crystals are engaged in the load transferring process through the formation of force chain in the material. The formation of the force chain causes stress concentration followed by a brittle failure mode.

Keywords

Energetic material Particulate composite Dynamic experiments Mesoscale PBX PBS 

Notes

Acknowledgments

The financial support of Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-14-1-0209 and FA9550-16-1-0623 is gratefully acknowledged.

References

  1. 1.
    Yan Q-L, Zeman S, Elbeih A (2012) Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta 537:1–12CrossRefGoogle Scholar
  2. 2.
    Tarver CM, Tran TD (2004) Thermal decomposition models for HMX-based plastic bonded explosives. Combust Flame 137:50–62CrossRefGoogle Scholar
  3. 3.
    Balzer JE, Siviour CR, Walley SM et al (2004) Behaviour of ammonium perchlorate-based propellants and a polymer-bonded explosive under impact loading. Proc R Soc A Math Phys Eng Sci 460:781–806.  https://doi.org/10.1098/rspa.2003.1188 CrossRefGoogle Scholar
  4. 4.
    Grantham SG, Siviour CR, Porud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15:1867CrossRefGoogle Scholar
  5. 5.
    Barua A, Horie Y, Zhou M (2012) Microstructural level response of HMX–Estane polymer-bonded explosive under effects of transient stress waves. Proc R Soc Lond A Math Phys Sci 2147:3725–3744.Google Scholar
  6. 6.
    Drodge DR, Williamson DM (2016) Understanding damage in polymer-bonded explosive composites. J Mater Sci 51:668–679CrossRefGoogle Scholar
  7. 7.
    Siviour CR, Grantham SG, Williamson DM et al (2009) Novel measurements of material properties at high rates of strain using speckle metrology. Imaging Sci J 57:326–332CrossRefGoogle Scholar
  8. 8.
    Kang G, Chen P, Guo X et al (2018) Simulations of meso-scale deformation and damage of polymer bonded explosives by the numerical manifold method. Eng Anal Bound Elem 96:123–137MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gao X, Zhao T, Luo G et al (2018) Enhanced thermal and mechanical properties of PW-based HTPB binder using polystyrene (PS) and PS–SiO2 microencapsulated paraffin wax (MePW). J Appl Polym Sci 135:46222CrossRefGoogle Scholar
  10. 10.
    Wang X, Wu Y, Huang F (2017) Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives. Int J Solids Struct 129:28–39CrossRefGoogle Scholar
  11. 11.
    You S, Chen M-W, Dlott DD, Suslick KS (2015) Ultrasonic hammer produces hot spots in solids. Nat Commun 6:6581CrossRefGoogle Scholar
  12. 12.
    Roberts ZA, Casey AD, Gunduz IE et al (2017) The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials. J Appl Phys 122:244901CrossRefGoogle Scholar
  13. 13.
    Chen M-W, You S, Suslick KS, Dlott DD (2014) Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy. Rev Sci Instrum 85:023705.  https://doi.org/10.1063/1.4864197 CrossRefGoogle Scholar
  14. 14.
    Roessig KM (2002) Mesoscale mechanics of plastic bonded explosives. In: AIP conference proceedings. IOP INSTITUTE OF PHYSICS PUBLISHING LTD, pp 973–978Google Scholar
  15. 15.
    Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25:489–496CrossRefGoogle Scholar
  16. 16.
    Hu Z, Luo H, Bardenhagen S et al (2015) Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of-tomography. Exp Mech 1:289–300CrossRefGoogle Scholar
  17. 17.
    Beckvermit JC, Peterson JR, Harman T et al (2013) Multiscale modeling of accidental explosions and detonations. Comput Sci Eng 15:76–86CrossRefGoogle Scholar
  18. 18.
    Barua A, Zhou M (2011) A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sci Eng 19:55001CrossRefGoogle Scholar
  19. 19.
    Barua A, Horie Y, Zhou M (2012) Energy localization in HMX-Estane polymer-bonded explosives during impact loading. J Appl Phys 111:54902CrossRefGoogle Scholar
  20. 20.
    Bardenhagen SG, Brackbill JU, Sulsky D (2000) Numerical study of stress distribution in sheared granular material in two dimensions. Phys Rev E 62:3882CrossRefGoogle Scholar
  21. 21.
    LaBarbera DA, Zikry MA (2015) Dynamic fracture and local failure mechanisms in heterogeneous RDX-Estane energetic aggregates. J Mater Sci 50:5549–5561CrossRefGoogle Scholar
  22. 22.
    LaBarbera DA, Zikry MA (2015) Heterogeneous thermo-mechanical behavior and hot spot formation in RDX–estane energetic aggregates. Int J Solids Struct 62:91–103CrossRefGoogle Scholar
  23. 23.
    Ravindran S, Tessema A, Kidane A (2016) Local deformation and failure mechanisms of polymer bonded energetic materials subjected to high strain rate loading. J Dyn Behav Mater 2:146–156.  https://doi.org/10.1007/s40870-016-0051-9 CrossRefGoogle Scholar
  24. 24.
    Ravindran S, Tessema A, Kidane A (2017) Multiscale damage evolution in polymer bonded sugar under dynamic loading. Mech Mater 114:97–106CrossRefGoogle Scholar
  25. 25.
    Ravindran S, Tessema A, Kidane A (2016) Note: dynamic meso-scale full field surface deformation measurement of heterogeneous materials. Rev Sci Instrum 87:036108.  https://doi.org/10.1063/1.4944488 CrossRefGoogle Scholar
  26. 26.
    Ravindran S, Tessema A, Kidane A, Sutton MA (2016) Meso-scale deformation mechanisms of polymer bonded energetic materials under dynamic loading. In: Conference proceedings of the society for experimental mechanics Series, pp 451–456Google Scholar
  27. 27.
    Parab ND, Roberts ZA, Harr MH et al (2016) High speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl Phys Lett 109:131903CrossRefGoogle Scholar
  28. 28.
    Ravindran S, Tessema A, Kidane A, Sutton MA (2016) Meso-scale deformation mechanisms of polymer bonded energetic materials under dynamic loading. In: Mechanics of composite and multi-functional materials, vol 7. Springer, pp 451–456Google Scholar
  29. 29.
    Bacon C (1998) An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Exp Mech 38:242–249CrossRefGoogle Scholar
  30. 30.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676CrossRefGoogle Scholar
  31. 31.
    Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39:81–85CrossRefGoogle Scholar
  32. 32.
    Jordan JL, Montaigne D, Gould P et al (2016) High strain rate and shock properties of hydroxyl-terminated polybutadiene (HTPB) with varying amounts of plasticizer. J Dyn Behav Mater 2:91–100CrossRefGoogle Scholar
  33. 33.
    Kendall MJ, Drodge DR, Froud RF, Siviour CR (2014) Stress gage system for measuring very soft materials under high rates of deformation. Meas Sci Technol 25:75603CrossRefGoogle Scholar
  34. 34.
    Alikarami R, Torabi A (2015) Micro-texture and petrophysical properties of dilation and compaction shear bands in sand. Geomech Energy Environ 3:1–10CrossRefGoogle Scholar
  35. 35.
    Lazzeri A, Thio YS, Cohen RE (2004) Volume strain measurements on CaCO3/polypropylene particulate composites: the effect of particle size. J Appl Polym Sci 91:925–935CrossRefGoogle Scholar
  36. 36.
    Radjai F, Topin V, Richefeu V et al (2010) Force transmission in cohesive granular media. In: Math model phys instances granul flows, pp 240–260Google Scholar

Copyright information

© Society for Experimental Mechanics 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering (Room A132)University of South CarolinaColumbiaUSA

Personalised recommendations