Advertisement

Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment

  • Junhao Pan
  • Edward Haksing IpEmail author
  • Laurette Dubé
Theory and Methods
  • 42 Downloads
Part of the following topical collections:
  1. Theory and Methods

Abstract

Ansari et al. (Psychometrika 67:49–77, 2002) applied a multilevel heterogeneous model for confirmatory factor analysis to repeated measurements on individuals. While the mean and factor loadings in this model vary across individuals, its factor structure is invariant. Allowing the individual-level residuals to be correlated is an important means to alleviate the restriction imposed by configural invariance. We relax the diagonality assumption of residual covariance matrix and estimate it using a formal Bayesian Lasso method. The approach improves goodness of fit and avoids ad hoc one-at-a-time manipulation of entries in the covariance matrix via modification indexes. We illustrate the approach using simulation studies and real data from an ecological momentary assessment.

Keywords

confirmatory factor analysis ecological momentary assessment residual covariance matrix random effects MCMC methods 

Notes

References

  1. Ansari, A., Jedidi, K., & Dubé, L. (2002). Heterogeneous factor analysis models: A Bayesian approach. Psychometrika, 67, 49–77.CrossRefGoogle Scholar
  2. Arminger, G., & Stein, P. (1997). Finite mixtures of covariance structure models with regressors. Sociological Methods and Research, 26, 148–182.CrossRefGoogle Scholar
  3. Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388.CrossRefGoogle Scholar
  4. Averill, J. R., Catlin, G., & Chon, K. K. (1990). Rules of Hope. New York, NY: Springer.CrossRefGoogle Scholar
  5. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.CrossRefGoogle Scholar
  6. Bollen, K. A. (1989). Structural equation models. New York: Wiley.Google Scholar
  7. Borkenau, P., & Ostendorf, F. (1998). The Big Five as states: How useful is the five-factor model to describe intra-individual variations over time? Journal of Personality Research, 32, 202–221.CrossRefGoogle Scholar
  8. Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., et al. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics: A Festschrift for Roderick P. McDonald (pp. 415–452). Mahwah, NJ: Erlbaum.Google Scholar
  10. Chow, S. M., Tang, N., Yuan, Y., Song, X., & Zhu, H. (2011). Bayesian estimation of semiparametric dynamic latent variable models using the dirichlet process prior. British Journal of Mathematical and Statistical Psychology, 64(1), 69–106.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the experience-sampling method. Journal of Nervous and Mental Disease, 175, 526–536.PubMedCrossRefPubMedCentralGoogle Scholar
  12. De Roover, K. D., Vermunt, J. K., Timmerman, M. E., & Ceulemans, E. (2017). Mixture simultaneous factor analysis for latent variables between higher level units of multilevel data. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 506–523.CrossRefGoogle Scholar
  13. Diener, E., & Emmons, R. A. (1984). The independence of positive and negative affect. Journal of Personality and Social Psychology, 47, 1105–1117.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dunn, E. C., Masyn, K. E., Johston, W. R., & Subramanian, S. V. (2015). Modeling contextual effects using individual-level data and without aggregation: An illustration of multilevel factor analysis (MLFA) with collective efficacy. Population Health Metrics, 13, 12–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gelfand, A. E. (1996). Model determination using sampling-based methods. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (pp. 145–161). London: Chapman & Hall.Google Scholar
  16. Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S. Richardson, & D. J. Spiegelharter (Eds.), Markov Chain Monte Carlo in Practice (pp. 131–144). London: Chapman & Hall.Google Scholar
  17. Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, et al. (Eds.), Bayesian statistics (Vol. 5, pp. 599–607). New York: Oxford University Press.Google Scholar
  18. Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.CrossRefGoogle Scholar
  19. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.PubMedCrossRefGoogle Scholar
  20. Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice. London: Chapman & Hall.Google Scholar
  21. Geisser, S., & Eddy, E. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–60.CrossRefGoogle Scholar
  22. Goldstein, H., & Browne, W. (2005). Multilevel factor analysis models for continuous and discrete data. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics: A festschrift for Roderick P McDonald (pp. 453–475). Mahwah, MJ: Erlbaum.Google Scholar
  23. Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models with applications to repeated measure data. Statistics in Medicine, 13, 1643–1655.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hans, C. (2009). Bayesian lasso regression. Biometrika, 96(4), 835–845.CrossRefGoogle Scholar
  25. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–109.CrossRefGoogle Scholar
  26. Heck, R. H. (1999). Multilevel modeling with SEM. In S. L. Thomas & R. H. Heck (Eds.), Introduction to multilevel modeling techniques (pp. 89–127). Mahwah, NJ: Lawrence Erlbaum Associates Inc.CrossRefGoogle Scholar
  27. Jöreskog, K. G., & Sörbom, D. (1984). LISREL VI user’s guide. Mooresville, IN: Scientific Software.Google Scholar
  28. Kaplan, D. (1990). Evaluating and modifying covariance structure models: A review and recommendation. Multivariate Behavioral Research, 25, 137–155.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRefGoogle Scholar
  30. Kelderman, H., & Molenaar, P. C. (2007). The effect of individual differences in factor loadings on the standard factor model. Multivariate Behavioral Research, 42(3), 435–456.CrossRefGoogle Scholar
  31. Khondker, Z. S., Zhu, H. T., Chu, H. T., Lin, W. L., & Ibrahim, J. G. (2013). The Bayesian covariance lasso. Statistics and Its Interface, 6(2), 243–259.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Krone, T., Albers, C. J., Kuppens, P., & Timmerman, M. E. (2018). A multivariate statistical model for emotion dynamics. Emotion, 18(5), 739–754.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lee, S. Y. (2007). Structural equation modelling: A Bayesian approach. New York: Wiley.CrossRefGoogle Scholar
  34. Lee, S. Y., & Song, X. Y. (2012). Basic and advanced Bayesian structural equation modeling: With applications in the medical and behavioral sciences. New York: Wiley.Google Scholar
  35. Longford, N. T., & Muthén, B. O. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581–597.CrossRefGoogle Scholar
  36. Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41–67.Google Scholar
  37. Lu, Z. H., Chow, S. M., & Loken, E. (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51(4), 519–539.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lu, J., Huet, C., & Dubé, L. (2011). Emotional reinforcement as a protective factor for healthy eating in home settings. The American Journal of Clinical Nutrition, 94(1), 254–261.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Maydeu-Olivares, A., & Coffman, D. L. (2006). Random intercept item factor analysis. Psychological Methods, 11(4), 344–362.PubMedCrossRefGoogle Scholar
  40. MacCallum, R. C. (1995). Model specification: Procedures, strategies, and related issues. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: SAGE.Google Scholar
  41. MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490–504.PubMedCrossRefPubMedCentralGoogle Scholar
  42. McArdle, J.J. (1982). Structural equation modeling of an individual system: Preliminary results from ‘A case study in episodic alcoholism’. Department of Psychology, University of Denver. (Unpublished manuscript).Google Scholar
  43. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091.CrossRefGoogle Scholar
  44. Merz, E. L., & Roesch, S. C. (2011). Modeling trait and state variation using multilevel factor analysis with panas daily diary data. Journal of Research in Personality, 45(1), 2–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50(2), 181–202.CrossRefGoogle Scholar
  46. Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18(2), 112–117.CrossRefGoogle Scholar
  47. Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28, 338–354.CrossRefGoogle Scholar
  48. Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological methods and Research, 22, 376–398.CrossRefGoogle Scholar
  49. Muthén, B. O. (2007). Latent variable hybrids: Overview of old and new models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 1–24). Charlotte, NC: Information Age.Google Scholar
  50. Muthén, L.K., & Muthén, B.O. (1998–2013). Mplus User’s Guide., 7th Edition. Los Angeles, CA: Muthén & Muthén.Google Scholar
  51. Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Alternative dynamic factor models for multivariate time-series analyses. In D. M. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Advances and techniques (pp. 235–265). Mahwah, NJ: Erlbaum.Google Scholar
  52. O’Malley, A. J., & Zaslavsky, A. M. (2008). Domain-level covariance analysis for multilevel survey data with structured nonresponse. Journal of the American Statistical Association, 103(484), 1405–1418.CrossRefGoogle Scholar
  53. Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686.CrossRefGoogle Scholar
  54. Pan, J. H., Ip, E. H., & Dubé, L. (2017). An alternative to post-hoc model modification in confirmatory factor analysis: The Bayesian Lasso. Psychological Methods, 22(4), 687–704.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Reise, S. P., Kim, D. S., Mansolf, M., & Widaman, K. F. (2016). Is the bifactor model a better model or is it just better at modeling implausible responses? Application of iteratively reweighted least squares to the rosenberg self-esteem scale. Multivariate Behavioral Research, 51(6), 818–838.PubMedPubMedCentralGoogle Scholar
  56. Reise, S. P., Ventura, J., Nuechterlein, K. H., & Kim, K. H. (2005). An illustration of multilevel factor analysis. Journal of Personality Assessment, 84, 126–136.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Schmukle, S. C., Egloff, B., & Burns, L. R. (2002). The relationship between positive and negative affect in the positive and negative affect schedule. Journal of Research in Personality, 36(5), 463–475.CrossRefGoogle Scholar
  58. Shiffman, S. (2000). Real-time self-report of momentary states in the natural environment: Computerized Ecological Momentary Assessment. In A. Stone, J. Turkkan, J. Jobe, et al. (Eds.), The science of self-report: Implications for research and practice (pp. 277–296). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  59. Song, H., & Ferrer, E. (2012). Bayesian estimation of random coefficient dynamic factor models. Multivariate Behavioral Research, 47(1), 26–60.CrossRefGoogle Scholar
  60. Song, X. Y., Tang, N. S., & Chow, S. M. (2012). A bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects. Computational Statistics & Data Analysis, 56(12), 4190–4203.CrossRefGoogle Scholar
  61. Sörbom, D. (1989). Model modification. Psychometrika, 54(3), 371–384.CrossRefGoogle Scholar
  62. Stakhovych, S., Bijmolt, T. H., & Wedel, M. (2012). Spatial dependence and heterogeneity in Bayesian factor analysis: A cross-national investigation of Schwartz values. Multivariate Behavioral Research, 47(6), 803–839.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528–550.CrossRefGoogle Scholar
  64. Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis, 7(4), 867–886.CrossRefGoogle Scholar
  65. Yung, Y. F. (1997). Finite mixtures in confirmatory factor analysis models. Psychometrika, 62, 297–330.CrossRefGoogle Scholar
  66. Zhang, Z., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42, 729–756.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2019

Authors and Affiliations

  1. 1.Department of PsychologySun Yat-sen UniversityGuangzhouChina
  2. 2.Wake Forest School of MedicineWinston-SalemUSA
  3. 3.Desautels Faculty of ManagementMcGill UniversityMontréalCanada

Personalised recommendations