# Contemporaneous Statistics for Estimation in Stochastic Actor-Oriented Co-evolution Models

## Abstract

Stochastic actor-oriented models (SAOMs) can be used to analyse dynamic network data, collected by observing a network and a behaviour in a panel design. The parameters of SAOMs are usually estimated by the method of moments (MoM) implemented by a stochastic approximation algorithm, where statistics defining the moment conditions correspond in a natural way to the parameters. Here, we propose to apply the generalized method of moments (GMoM), using more statistics than parameters. We concentrate on statistics depending jointly on the network and the behaviour, because of the importance of their interdependence, and propose to add contemporaneous statistics to the usual cross-lagged statistics. We describe the stochastic algorithm developed to approximate the GMoM solution. A small simulation study supports the greater statistical efficiency of the GMoM estimator compared to the MoM.

## Keywords

generalized method of moments networks behaviour panel data stochastic actor-oriented model stochastic approximation## Notes

## References

- Amati, V., Schönenberger, F., & Snijders, T. A. (2015). Estimation of stochastic actor-oriented models for the evolution of networks by generalized method of moments.
*Journal de la Société Française de Statistique*,*156*(3), 140–165.Google Scholar - Block, P. (2015). Reciprocity, transitivity, and the mysterious three-cycle.
*Social Networks*,*40*, 163–173.Google Scholar - Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable—generalized method of moments (MIIV-GMM) estimators for latent variable models.
*Psychometrika*,*79*(1), 20–50.PubMedGoogle Scholar - Breusch, T., Qian, H., Schmidt, P., & Wyhowski, D. (1999). Redundancy of moment conditions.
*Journal of Econometrics*,*91*(1), 89–111.Google Scholar - Burguete, J. F., Ronald Gallant, A., & Souza, G. (1982). On unification of the asymptotic theory of nonlinear econometric models.
*Econometric Reviews*,*1*(2), 151–190.Google Scholar - Burk, W. J., Kerr, M., & Stattin, H. (2008). The co-evolution of early adolescent friendship networks, school involvement, and delinquent behaviors.
*Revue française de sociologie*,*49*(3), 499–522.Google Scholar - Ebbers, J. J., & Wijnberg, N. M. (2010). Disentangling the effects of reputation and network position on the evolution of alliance networks.
*Strategic Organization*,*8*(3), 255–275.Google Scholar - Gallant, A. R., Hsieh, D., & Tauchen, G. (1997). Estimation of stochastic volatility models with diagnostics.
*Journal of econometrics*,*81*(1), 159–192.Google Scholar - Hall, A. R. (2005).
*Generalized method of moments*. Oxford: Oxford University Press.Google Scholar - Hansen, L. (1982). Large sample properties of generalized method of moments estimators.
*Econometrica*,*50*, 1029–1054.Google Scholar - Hansen, L. P., & Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models.
*Econometrica*,*50*(5), 1269–1286.Google Scholar - Haynie, D. L., Doogan, N. J., & Soller, B. (2014). Gender, friendship networks, and delinquency: A dynamic network approach.
*Criminology*,*52*(4), 688–722.PubMedPubMedCentralGoogle Scholar - Holland, P. W., & Leinhardt, S. (1977). A dynamic model for social networks.
*Journal of Mathematical Sociology*,*5*(1), 5–20.Google Scholar - Hunter, D. R. (2007). Curved exponential family models for social networks.
*Social Networks*,*29*, 216–230.PubMedPubMedCentralGoogle Scholar - Kim, J.-S., & Frees, E. W. (2007). Multilevel modeling with correlated effects.
*Psychometrika*,*72*(4), 505–533.Google Scholar - Koskinen, J. H., & Snijders, T. A. B. (2007). Bayesian inference for dynamic social network data.
*Journal of Statistical Planning and Inference*,*13*, 3930–3938.Google Scholar - Luce, R., & Suppes, P. (1965). Preference, utility, and subjective probability.
*Handbook of Mathematical Psychology*,*3*, 249–410.Google Scholar - Mátyás, L. (1999).
*Generalized method of moments estimation*. Cambridge: Cambridge University Press.Google Scholar - McFadden, D. (1973).
*Conditional logit analysis of qualitative choice behavior*. Oakland: Institute of Urban and Regional Development, University of California.Google Scholar - McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks.
*Annual Review of Sociology*,*27*(1), 415–444.Google Scholar - Meyer, C. D. (2000).
*Matrix analysis and applied linear algebra*. Philadelphia: SIAM.Google Scholar - Michell, L., & West, P. (1996). Peer pressure to smoke: The meaning depends on the method.
*Health Education Research*,*11*(1), 39–49.Google Scholar - Newey, W., & Windmeijer, F. (2009). Generalized method of moments with many weak moment conditions.
*Econometrica*,*77*(3), 687–719.Google Scholar - Neyman, J., & Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference: Part II.
*Biometrika*,*20*, 263–294.Google Scholar - Niezink, N. M. D., & Snijders, T. A. B. (2017). Co-evolution of social networks and continuous actor attributes.
*The Annals of Applied Statistics*,*11*(4), 1948–1973.Google Scholar - Niezink, N. M. D., Snijders, T. A. B., & van Duijn, M. A. J. (2019). No longer discrete: Modeling the dynamics of social networks and continuous behavior.
*Sociological Methodology*. https://doi.org/10.1177/0081175019842263. Google Scholar - Norris, J. R. (1997).
*Markov chains*. Cambridge: Cambridge University Press.Google Scholar - Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.
*The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*,*50*(302), 157–175.Google Scholar - Pflug, G. C. (1990). Non-asymptotic confidence bounds for stochastic approximation algorithms with constant step size.
*Monatshefte für Mathematik*,*110*(3–4), 297–314.Google Scholar - Polyak, B. T. (1990). A new method of stochastic approximation type.
*Automation and Remote Control*,*51*, 937–946.Google Scholar - Ripley, R. M., Snijders, T. A. B., Boda, Z., András, V., & Paulina, P. (2019).
*Manual for RSiena*. Groningen: ICS, Department of Sociology, University of Groningen.Google Scholar - Robbins, H., & Monro, S. (1951). A stochastic approximation method.
*The Annals of Mathematical Statistics*,*22*, 400–407.Google Scholar - Ruppert, D. (1988).
*Efficient estimations from a slowly convergent Robbins–Monro process*. Technical report, Cornell University Operations Research and Industrial Engineering.Google Scholar - Schulte, M., Cohen, N. A., & Klein, K. J. (2012). The coevolution of network ties and perceptions of team psychological safety.
*Organization Science*,*23*(2), 564–581.Google Scholar - Schweinberger, M., & Snijders, T. A. B. (2007). Markov models for digraph panel data: Monte Carlo-based derivative estimation.
*Computational Statistics & Data Analysis*,*51*(9), 4465–4483.Google Scholar - Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change.
*Journal of Mathematical Sociology*,*21*(1–2), 149–172.Google Scholar - Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics.
*Sociological Methodology*,*31*(1), 361–395.Google Scholar - Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J. C. Conte, J. Scott, & S. Wasserman (Eds.),
*Models and methods in social network analysis*(pp. 215–247). Cambridge: Cambridge University Press.Google Scholar - Snijders, T. A. B. (2017a). Stochastic actor-oriented models for network dynamics.
*Annual Review of Statistics and Its Application*,*4*, 343–363.Google Scholar - Snijders, T. A. B. (2017b).
*Siena algorithms*. Technical report, University of Groningen, University of Oxford. http://www.stats.ox.ac.uk/~snijders/siena/Siena_algorithms.pdf. - Snijders, T. A. B., Koskinen, J., & Schweinberger, M. (2010a). Maximum likelihood estimation for social network dynamics.
*The Annals of Applied Statistics*,*4*(2), 567–588.PubMedPubMedCentralGoogle Scholar - Snijders, T. A. B., & Lomi, A. (2019). Beyond homophily: Incorporating actor variables in statistical network models.
*Network Science*,*7*(1), 1–19.Google Scholar - Snijders, T. A. B., Steglich, C. E. G., & Schweinberger, M. (2007). Modeling the co-evolution of networks and behavior. In K. van Montfort, H. Oud, & A. Satorra (Eds.),
*Longitudinal models in the behavioral and related sciences*(pp. 41–71). Mahwah, NJ: Lawrence Erlbaum.Google Scholar - Snijders, T. A. B., Van de Bunt, G. G., & Steglich, C. E. G. (2010b). Introduction to stochastic actor-based models for network dynamics.
*Social Networks*,*32*(1), 44–60.Google Scholar - Snijders, T. A. B., & van Duijn, M. A. J. (1997). Simulation for statistical inference in dynamic network models. In R. Conte, R. Hegselmann, & P. Terna (Eds.),
*Simulating social phenomena*(pp. 493–512). Berlin: Springer.Google Scholar - Steglich, C. E. G., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence.
*Sociological Methodology*,*40*(1), 329–393.Google Scholar - Strang, G. (1976).
*Linear algebra and its applications*. New York: Academic Press.Google Scholar - Train, K. E. (2009).
*Discrete choice methods with simulation*. Cambridge: Cambridge University Press.Google Scholar