Advertisement

Creating Misspecified Models in Moment Structure Analysis

  • Keke LaiEmail author
Article

Abstract

To understand how SEM methods perform in practice where models always have misfit, simulation studies often involve incorrect models. To create a wrong model, traditionally one specifies a perfect model first and then removes some paths. This approach becomes difficult or even impossible to implement in moment structure analysis and fails to control the amounts of misfit separately and precisely for the mean and covariance parts. Most importantly, this approach assumes a perfect model exists and wrong models can eventually be made perfect, whereas in practice models are all implausible if taken literally and at best provide approximations of the real world. To improve the traditional approach, we propose a more realistic and flexible way to create model misfit for multiple group moment structure analysis. Given (a) the model \(\varvec{{{\upmu }}} (\cdot ) \) and \(\varvec{{\Sigma }} (\cdot ) \), (b) population model parameters \(\varvec{{{\uptheta }}} _0\), and (c) \(F_1\) and \(F_2\) specified by the researcher, our method creates \(\varvec{{{\upmu }}} ^*\) and \(\varvec{{\Sigma }} ^*\) to simultaneously satisfy (a) \(\varvec{{{\uptheta }}} _0 = \arg \min F[\varvec{{{\upmu }}} ^*, \varvec{{\Sigma }} ^*; \varvec{{{\upmu }}} (\cdot ), \varvec{{\Sigma }} (\cdot )]\), (b) the mean structure’s misfit equals \(F_1\), and (c) the covariance structure’s misfit equals \(F_2\).

Keywords

Monte Carlo experiments model misspecification moment structure analysis multiple group analysis 

Notes

Supplementary material

11336_2018_9655_MOESM1_ESM.r (7 kb)
Supplementary material 1 (R 7 KB)

References

  1. Arminger, G., & Schoenberg, R. (1989). Pseudo maximum likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika, 54, 409–426.CrossRefGoogle Scholar
  2. Box, G. E. P. (1979a). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). New York: Academic.CrossRefGoogle Scholar
  3. Box, G. E. P. (1979b). Some problems of statistics and everyday life. Journal of the American Statistical Association, 74, 1–4.CrossRefGoogle Scholar
  4. Chun, S. Y., & Shapiro, A. (2010). Construction of covariance matrices with a specified discrepancy function minimizer, with application to factor analysis. SIAM Journal on Matrix Analysis and Applications, 31, 1570–1583.CrossRefGoogle Scholar
  5. Cudeck, R., & Browne, M. W. (1992). Constructing a covariance matrix that yields a specified minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357–369.CrossRefGoogle Scholar
  6. Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and the “problem” of sample size: A clarification. Psychological Bulletin, 109, 512–519.CrossRefGoogle Scholar
  7. GilBert, P., & Varadhan, R. (2016). numDeriv: Accurate numerical derivatives [software and manual]. Retrieved January 10, 2018 from https://CRAN.R-project.org/package=numDeriv.
  8. Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 681–700.CrossRefGoogle Scholar
  9. Kano, Y. (1986). Conditions on consistency of estimators in covariance structure model. Journal of the Japan Statistical Society, 16, 75–80.Google Scholar
  10. Lai, K. (2018). Estimating standardized SEM parameters given nonnormal data and incorrect model: Methods and comparison. Structural Equation Modeling, 25, 600–620.CrossRefGoogle Scholar
  11. Lai, K., & Green, S. B. (2016). The problem with having two watches: Assessment of fit when RMSEA and CFI disagree. Multivariate Behavioral Research, 51, 220–239.CrossRefGoogle Scholar
  12. Linfield, G. R., & Penny, J. E. T. (1989). Microcomputers in numerical analysis. New York: Halsted Press.Google Scholar
  13. MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38, 113–139.CrossRefGoogle Scholar
  14. MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in the common factor model: Implications for theory and practice. Psychological Bulletin, 109, 502–511.CrossRefGoogle Scholar
  15. MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611–637.CrossRefGoogle Scholar
  16. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.CrossRefGoogle Scholar
  17. Meehl, P. E. (1990). Appraising and amending theories: The strategy of Lakatosian defense and two principles that warrant it. Psychological Inquiry, 1, 108–141.CrossRefGoogle Scholar
  18. R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved January 10, 2018 from http://www.R-project.org/.
  19. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.CrossRefGoogle Scholar
  20. Shapiro, A. (1984). A note on the consistency of estimators in the analysis of moment structures. British Journal of Mathematical and Statistical Psychology, 37, 84–88.CrossRefGoogle Scholar
  21. Squire, W., & Trapp, G. (1998). Using complex variables to estimate derivatives of real functions. SIAM Review, 40, 110–112.CrossRefGoogle Scholar
  22. Thissen, D. (2001). Psychometric engineering as art. Psychometrika, 66, 473–486.CrossRefGoogle Scholar
  23. Thurstone, L. L. (1930). The learning function. Journal of General Psychology, 3, 469–478.CrossRefGoogle Scholar
  24. Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421–459.CrossRefGoogle Scholar
  25. Tukey, J. W. (1961). Discussion, emphasizing the connection between analysis of variance and spectrum analysis. Technometrics, 3, 191–219.CrossRefGoogle Scholar
  26. Vuong, Q. H. (1989). Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica, 57, 307–333.CrossRefGoogle Scholar
  27. White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.CrossRefGoogle Scholar
  28. Wu, H., & Browne, M. W. (2015). Quantifying adventitious error in a covariance structure as a random effect. Psychometrika, 80, 571–600.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2019

Authors and Affiliations

  1. 1.Psychological SciencesUniversity of CaliforniaMercedUSA

Personalised recommendations