Advertisement

Very light physical activity amount in FTO genetically predisposed obese individuals

  • Giuseppe Labruna
  • Maurizio Marra
  • Carmela Nardelli
  • Annamaria Mancini
  • Pasqualina Buono
  • Lucia SacchettiEmail author
  • Fabrizio PasanisiEmail author
Original Article
  • 5 Downloads

Abstract

Purpose

Fat mass and obesity-related (FTO) rs9939609 polymorphism has a role in body mass index (BMI) increase and in predisposing to metabolic syndrome (MetS). Our aim was to investigate if a very light physical activity could counteract weight gain and MetS in obese subjects bearing the rs9939609 FTO polymorphism from Southern Italy.

Methods

Data of fitness components, anthropometry, clinical-biochemical parameters and FTO polymorphism in 78 unrelated morbid obese subjects from Southern Italy (15–30 years) were examined. Physical activity energy expenditure was monitored by a SenseWear Pro 3 Armband for 24 h/day for 2 consecutive weekdays in all enrolled individuals.

Results

Sedentary obese subjects had higher waist circumference (124.8 vs 117.9 cm, P < 0.05), BMI (43.4 vs 37.7 kg/m2, P < 0.0001) and fat mass (49.2 vs 44.5%, P < 0.0001) compared to lightly active ones. Further, lightly active obese subjects bearing the rs9939609 FTO minor allele had a lower BMI than polymorphic sedentary ones (37.1 vs 45.3 kg/m2, respectively, P < 0.01), and did not differ in metabolic syndrome presence.

Conclusion

Our results suggest that a very light amount of physical exercise is associated with a lower BMI in obese subjects bearing the minor allele of the rs9939609 FTO polymorphism.

Keywords

Very light intensity exercise Obesity BMI FTO polymorphism Metabolic syndrome 

Notes

Funding

Pasqualina Buono was supported by the University of Naples “Parthenope” under grants “Bando per la Ricerca competitiva, triennio 2016-18 quota C” and “Fondo per la ricerca individuale di Ateneo, Annualità 2016″. Grants: Progetto Regione Campania SATIN to Lucia Sacchetti.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

All procedures were in accord with current national and international laws and regulations governing in line with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
  2. 2.
  3. 3.
    Saba A, Cupellaro E, Vassallo M (2014) Which dimensions of food-related lifestyle are likely to be associated with obesity in Italy? Public Health Nutr 17:607–613CrossRefGoogle Scholar
  4. 4.
    Feng R (2016) How much do we know about the heritability of BMI? Am J Clin Nutr 104:243–244CrossRefGoogle Scholar
  5. 5.
    Labruna G, Pasanisi F, Fortunato G, Nardelli C, Finelli C, Farinaro E, Contaldo F, Sacchetti L (2011) Sequence analysis of the UCP1 gene in a severe obese population from Southern Italy. J Obes 2011:269043CrossRefGoogle Scholar
  6. 6.
    Bracale R, Labruna G, Finelli C, Daniele A, Sacchetti L, Oriani G, Contaldo F, Pasanisi F (2012) The absence of polymorphisms in ADRB3, UCP1, PPARgamma, and ADIPOQ genes protects morbid obese patients toward insulin resistance. J Endocrinol Invest 35:2–4CrossRefGoogle Scholar
  7. 7.
    Labruna G, Pasanisi F, Nardelli C, Tarantino G, Vitale DF, Bracale R, Finelli C, Genua MP, Contaldo F, Sacchetti L (2009) UCP1-3826 AG + GG genotypes, adiponectin, and leptin/adiponectin ratio in severe obesity. J Endocrinol Invest 32:525–529CrossRefGoogle Scholar
  8. 8.
    Nardelli C, Labruna G, Liguori R, Mazzaccara C, Ferrigno M, Capobianco V, Pezzuti M, Castaldo G, Farinaro E, Contaldo F, Buono P, Sacchetti L, Pasanisi F (2013) Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed Res Int 2013:631082CrossRefGoogle Scholar
  9. 9.
    Brown CL, Perrin EM (2018) Obesity prevention and treatment in primary care. Acad Pediatr 18:736–745CrossRefGoogle Scholar
  10. 10.
    Iaffaldano L, Nardelli C, Raia M, Mariotti E, Ferrigno M, Quaglia F, Labruna G, Capobianco V, Capone A, Maruotti GM, Pastore L, Di Noto R, Martinelli P, Sacchetti L, Del Vecchio L (2013) High aminopeptidase N/CD13 levels characterize human amniotic mesenchymal stem cells and drive their increased adipogenic potential in obese women. Stem Cells Dev 22:2287–2297CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Gerovasili V, Agaku IT, Vardavas CI, Filippidis FT (2015) Levels of physical activity among adults 18–64 years old in 28 European countries. Prev Med 81:87–91CrossRefGoogle Scholar
  13. 13.
    Pillay JD, van der Ploeg HP, Kolbe-Alexander TL, Proper KI, van Stralen M, Tomaz SA, van Mechelen W, Lambert EV (2015) The association between daily steps and health, and the mediating role of body composition: a pedometer-based, cross-sectional study in an employed South African population. BMC Public Health 15:174CrossRefGoogle Scholar
  14. 14.
    Scheers T, Philippaerts R, Lefevre J (2013) SenseWear-determined physical activity and sedentary behavior and metabolic syndrome. Med Sci Sports Exerc 45:481–489CrossRefGoogle Scholar
  15. 15.
    Cho ER, Shin A, Kim J, Jee SH, Sung J (2009) Leisure-time physical activity is associated with a reduced risk for metabolic syndrome. Ann Epidemiol 19:784–792CrossRefGoogle Scholar
  16. 16.
    Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N (2008) Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31:369–371CrossRefGoogle Scholar
  17. 17.
    Lakka TA, Laaksonen DE, Lakka HM, Mannikko N, Niskanen LK, Rauramaa R, Salonen JT (2003) Sedentary lifestyle, poor cardiorespiratory fitness, and the metabolic syndrome. Med Sci Sports Exerc 35:1279–1286CrossRefGoogle Scholar
  18. 18.
    Dong SS, Zhang YJ, Chen YX, Yao S, Hao RH, Rong Y, Niu HM, Chen JB, Guo Y, Yang TL (2018) Comprehensive review and annotation of susceptibility SNPs associated with obesity-related traits. Obes Rev 19:917–930CrossRefGoogle Scholar
  19. 19.
    Loos RJ (2018) The genetics of adiposity. Curr Opin Genet Dev 50:86–95CrossRefGoogle Scholar
  20. 20.
    Goni L, García-Granero M, Milagro FI, Cuervo M, Martínez JA (2018) Phenotype and genotype predictors of BMI variability among European adults. Nutr Diabetes 8:27CrossRefGoogle Scholar
  21. 21.
    Liguori R, Labruna G, Alfieri A, Martone D, Farinaro E, Contaldo F, Sacchetti L, Pasanisi F, Buono P (2014) The FTO gene polymorphism (rs9939609) is associated with metabolic syndrome in morbidly obese subjects from southern Italy. Mol Cell Probes 28:195–199CrossRefGoogle Scholar
  22. 22.
    Drenowatz C, Jakicic JM, Blair SN, Hand GA (2015) Differences in correlates of energy balance in normal weight, overweight and obese adults. Obes Res Clin Pract 9:592–602CrossRefGoogle Scholar
  23. 23.
    Kalantari N, Doaei S, Keshavarz-Mohammadi N, Gholamalizadeh M, Pazan N (2016) Review of studies on the fat mass and obesity-associated (FTO) gene interactions with environmental factors affecting on obesity and its impact on lifestyle interventions. ARYA Atheroscler. 12(6):281–290Google Scholar
  24. 24.
    Bak A, Tsiami A, Greene C (2017) Methods of assessment of hydration status and their usefulness in detecting dehydration in the elderly. Curr Res Nutr Food Sci J 5(2):43–54CrossRefGoogle Scholar
  25. 25.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752CrossRefGoogle Scholar
  26. 26.
    Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C (2006) The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 6:33CrossRefGoogle Scholar
  27. 27.
    Santos-Lozano A, Hernández-Vicente A, Pérez-Isaac R, Santín-Medeiros F, Cristi-Montero C, Casajús JA, Garatachea N (2017) Is the SenseWear Armband accurate enough to quantify and estimate energy expenditure in healthy adults? Ann Transl Med 5(5):97CrossRefGoogle Scholar
  28. 28.
    Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581CrossRefGoogle Scholar
  29. 29.
    Pettee Gabriel K, McClain JJ, Lee CD, Swan PD, Alvar BA, Mitros MR, Ainsworth BE (2009) Evaluation of physical activity measures used in middle-aged women. Med Sci Sports Exerc 41(7):1403–1412CrossRefGoogle Scholar
  30. 30.
    Livingstone KM, Celis-Morales C, Papandonatos GD, Erar B, Florez JC, Jablonski KA, Razquin C, Marti A, Heianza Y, Huang T et al (2016) FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ 354:i4707CrossRefGoogle Scholar
  31. 31.
    Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D et al (2017) Genome-wide physical activity interactions in adiposity—a meta-analysis of 200,452 adults. PLoS Genet 13:e1006528CrossRefGoogle Scholar
  32. 32.
    Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH et al (2011) Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 8:e1001116CrossRefGoogle Scholar
  33. 33.
    Leonska-Duniec A, Ahmetov II, Zmijewski P (2016) Genetic variants influencing effectiveness of exercise training programmes in obesity—an overview of human studies. Biol Sport 33:207–214CrossRefGoogle Scholar
  34. 34.
    Li S, Zhao JH, Luan J, Ekelund U, Luben RN, Khaw KT, Wareham NJ, Loos RJ (2010) Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med 7:e1000332CrossRefGoogle Scholar
  35. 35.
    Vimaleswaran KS, Li S, Zhao JH, Luan J, Bingham SA, Khaw KT, Ekelund U, Wareham NJ, Loos RJ (2009) Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr 90:425–428CrossRefGoogle Scholar
  36. 36.
    Myers A, Gibbons C, Finlayson G, Blundell J (2017) Associations among sedentary and active behaviours, body fat and appetite dysregulation: investigating the myth of physical inactivity and obesity. Br J Sports Med 51:1540–1544CrossRefGoogle Scholar
  37. 37.
    Utz-Melere M, Targa-Ferreira C, Lessa-Horta B, Epifanio M, Mouzaki M, Mattos AA (2018) Non-alcoholic fatty liver disease in children and adolescents: lifestyle change—a systematic review and meta-analysis. Ann Hepatol 17:345–354CrossRefGoogle Scholar
  38. 38.
    Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F, Sacchetti L (2011) High leptin/adiponectin ratio and serum triglycerides are associated with an “at-risk” phenotype in young severely obese patients. Obesity (Silver Spring) 19:1492–1496CrossRefGoogle Scholar
  39. 39.
    Scuteri A, Laurent S, Cucca F, Cockcroft J, Cunha PG, Manas LR, Mattace Raso FU, Muiesan ML, Ryliskyte L, Rietzschel E, Strait J, Vlachopoulos C, Volzke H, Lakatta EG, Nilsson PM (2015) Metabolic syndrome across Europe: different clusters of risk factors. Eur J Prev Cardiol 22:486–491CrossRefGoogle Scholar
  40. 40.
    Siervo M, Lara J, Celis-Morales C, Vacca M, Oggioni C, Battezzati A, Leone A, Tagliabue A, Spadafranca A, Bertoli S (2016) Age-related changes in basal substrate oxidation and visceral adiposity and their association with metabolic syndrome. Eur J Nutr 55:1755–1767CrossRefGoogle Scholar
  41. 41.
    Valerio G, Maffeis C, Zucchini S, Lombardo F, Toni S, Rabbone I, Federico G, Scaramuzza A, Franzese A, Cherubini V, Zedda MA, Calcaterra V, Lera R, Cardinale G, Bruzzese M, Iughetti L, Gallo F, De Donno V, De Berardinis F, Iafusco D (2014) Geographic variation in the frequency of abdominal adiposity and metabolic syndrome in Italian adolescents with type 1 diabetes. Acta Diabetol 51:163–165CrossRefGoogle Scholar
  42. 42.
    Caserta CA, Mele A, Surace P, Ferrigno L, Amante A, Messineo A, Vacalebre C, Amato F, Baldassarre D, Amato M, Marcucci F, Zuin M (2017) Association of non-alcoholic fatty liver disease and cardiometabolic risk factors with early atherosclerosis in an adult population in Southern Italy. Ann Ist Super Sanita 53:77–81Google Scholar
  43. 43.
    Visram S, Clarke C, White M (2014) Making and maintaining lifestyle changes with the support of a lay health advisor: longitudinal qualitative study of health trainer services in northern England. PLoS ONE 9:e94749CrossRefGoogle Scholar
  44. 44.
    Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L, Andersen G, Nielsen AL, Albrechtsen A, Borch-Johnsen K, Rasmussen SS, Clausen JO, Sandbaek A, Lauritzen T, Hansen L, Jørgensen T, Pedersen O, Hansen T (2008) Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 57(1):95–101CrossRefGoogle Scholar
  45. 45.
    Ruiz JR, Labayen I, Ortega FB, Legry V, Moreno LA, Dallongeville J et al (2010) Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents: the HELENA study. Arch Pediatr Adolesc Med 164(4):328–333CrossRefGoogle Scholar
  46. 46.
    Akbari ME, Gholamalizadeh M, Doaei S, Mirsafa F (2018) FTO gene affects obesity and breast cancer through similar mechanisms: a new insight into the molecular therapeutic targets. Nutr Cancer 70(1):30–36CrossRefGoogle Scholar
  47. 47.
    Papadimitriou A, Nicolaidou P, Fretzayas A, Chrousos GP (2010) Clinical review: constitutional advancement of growth, a.k.a. early growth acceleration, predicts early puberty and childhood obesity. J Clin Endocrinol Metab 95:4535–4541CrossRefGoogle Scholar
  48. 48.
    Scheers T, Philippaerts R, Lefevre J (2012) Assessment of physical activity and inactivity in multiple domains of daily life: a comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary. Int J Behav Nutr Phys Act 9:71CrossRefGoogle Scholar
  49. 49.
    Scheers T, Philippaerts R, Lefevre J (2012) Variability in physical activity patterns as measured by the SenseWear Armband: how many days are needed? Eur J Appl Physiol 112:1653–1662CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRCCS SDNNaplesItaly
  2. 2.Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
  4. 4.CEINGE-Biotecnologie AvanzateNaplesItaly
  5. 5.Dipartimento di Scienze Motorie e del BenessereUniversità degli Studi di Napoli ParthenopeNaplesItaly

Personalised recommendations