Advertisement

ACTN3 R/X gene polymorphism across ethnicity: a brief review of performance gene

  • Hazwani Ahmad YusofEmail author
  • Wan Nor Syahirah Nasaruddin
  • Ahmad Munir Che Muhamed
Review
  • 2 Downloads

Abstract

Alpha-actinin-3 (ACTN3) gene is one of the most extensively investigated genes associated with human physical performance. The ACTN3 gene via ACTN3 R/X gene polymorphism codes the ACTN3 protein proteins that are localized at the boundaries of sarcomeres in the contractile apparatus of muscle Z disk. The ACTN3 R allele codes for functioning ACTN3 gene that results in the production of ACTN3 protein, while incomplete sequence in the ACTN3 X allele, preventing the production of that protein. Given these different physiological functions, possession of the ACTN3 R and X alleles may grant beneficial effects of strength/power and endurance activities, respectively. It has remained uncertain if human physical performance is indeed influenced by ACTN3 R/X gene polymorphisms as some studies have failed to demonstrate positive findings. It has been speculated that the inconsistencies observed in the present findings may be due to ethnicity differences as the distributions of ACTN3 R/X gene polymorphism has been reported to vary across ethnic groups in general populations worldwide. Therefore, the aim of this review is to provide a brief review of ACTN3 R/X gene polymorphism, including distribution pattern across ethnicity and its association on human physical performance based on population studies. Therefore, this review could serve as the basis for future research towards a better comprehension of the involvement of the ACTN3 R/X gene polymorphism on human physical performance across different ethnic groups.

Keywords

ACTN3 Polymorphism Ethnicity Performance 

Notes

Acknowledgement

This article is a part of work funded by the Short Term Grant, Universiti Sains Malaysia (304/CIPPT/6315037).

Compliance with ethical standards

Ethical approval

This review article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Baker J, Davids K (2006) Genetic and environmental constraints on variability in sport performance. In: Davids K, Bennett S, Newell KM (eds) Movement system variability. Human Kinetics, USA, pp 109–132Google Scholar
  2. 2.
    Silventoinen K, Magnusson PK, Tynelius P, Kaprio J, Rasmussen F (2008) Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol 32(4):341–349CrossRefGoogle Scholar
  3. 3.
    Chatterjee S, Das N (1995) Physical and motor fitness in twins. Jpn J Physiol 45(3):519–534CrossRefGoogle Scholar
  4. 4.
    Calvo M, Rodas G, Vallejo M, Estruch A, Arcas A, Javierre C, Viscor G, Ventura JL (2002) Heritability of explosive power and anaerobic capacity in humans. Euro J Appl Physiol 86(3):218–225CrossRefGoogle Scholar
  5. 5.
    Maridaki M (2006) Heritability of neuromuscular performance and anaerobic power in preadolescent and adolescent girls. J Sports Med Phys Fit 46(4):540–547Google Scholar
  6. 6.
    Alonso L, Souza E, Oliveira M, do Nascimento L, Dantas P (2014) Heritability of aerobic power of individuals in northeast Brazil. Biol Sport 31(4):267–270CrossRefGoogle Scholar
  7. 7.
    Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH, Gagnon J (1995) The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc 27(5):721–729CrossRefGoogle Scholar
  8. 8.
    Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2001) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 33(6):855–867CrossRefGoogle Scholar
  9. 9.
    Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2002) The human gene map for performance and health-related fitness phenotypes: the 2001 update. Med Sci Sports Exerc 34(8):1219–1233CrossRefGoogle Scholar
  10. 10.
    Rankinen T, Pérusse L, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C (2004) The human gene map for performance and health-related fitness phenotypes: the 2003 update. Med Sci Sports Exerc 36(9):1451–1469CrossRefGoogle Scholar
  11. 11.
    Wolfarth B, Bray MS, Hagberg JM, Pérusse L, Rauramaa R, Rivera MA, Roth SM, Rankinen T, Bouchard C (2005) The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med Sci Sports Exerc 37(6):881–903Google Scholar
  12. 12.
    Rankinen T, Bray MS, Hagberg JM, Pérusse L, Roth SM, Wolfarth B, Bouchard C (2006) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 38(11):1863–1888CrossRefGoogle Scholar
  13. 13.
    Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C (2009) The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exerc 41(1):35–73CrossRefGoogle Scholar
  14. 14.
    Rankinen T, Roth SM, Bray MS, Loos R, Pérusse L, Wolfarth B, Hagberg JM, Bouchard C (2010) Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 42(5):835–846CrossRefGoogle Scholar
  15. 15.
    Hagberg JM, Rankinen T, Loos RJ, Perusse L, Roth SM, Wolfarth B, Bouchard C (2011) Advances in exercise, fitness, and performance genomics in 2010. Med Sci Sports Exerc 43(5):743–752CrossRefGoogle Scholar
  16. 16.
    Roth SM, Rankinen T, Hagberg JM, Loos RJ, Perusse L, Sarzynski MA, Wolfarth B, Bouchard C (2012) Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc 44(5):809–817CrossRefGoogle Scholar
  17. 17.
    Pérusse L, Rankinen T, Hagberg JM, Loos RJF, Roth SM, Sarzynski MA, Wolfarth B, Bouchard C (2013) Advances in exercise, fitness, and performance genomics in 2012. Med Sci Sports Exerc 45(5):824–831CrossRefGoogle Scholar
  18. 18.
    Loos RJ, Hagberg JM, Pérusse L, Roth SM, Sarzynski MA, Wolfarth B, Rankinen T, Bouchard C (2015) Advances in exercise, fitness, and performance genomics in 2014. Med Sci Sports Exerc 47(6):1105–1112CrossRefGoogle Scholar
  19. 19.
    Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, Gao L (2013) The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One 8(1):e54685CrossRefGoogle Scholar
  20. 20.
    North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21(4):353–354CrossRefGoogle Scholar
  21. 21.
    MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39(10):1261–1265CrossRefGoogle Scholar
  22. 22.
    North K (2008) Why is alpha-actinin-3 deficiency so common in the general population? The evolution of athletic performance. Twin Res Hum Genet 11(4):384–394CrossRefGoogle Scholar
  23. 23.
    Yang N, MacArthur DG, Wolde B, Onywera VO, Boit MK, Lau SY, Wilson RH, Scott RA, Pitsiladis YP, North K (2007) The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc 39(11):1985–1988CrossRefGoogle Scholar
  24. 24.
    Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K (2001) Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10(13):1335–1346CrossRefGoogle Scholar
  25. 25.
    Scott RA, Irving R, Irwin L, Morrison E, Charlton V, Austin K, Tladi D, Deason M, Headley SA, Kolkhorst FW, Yang N, North K, Pitsiladis YP (2010) ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc 42(1):107–112CrossRefGoogle Scholar
  26. 26.
    Druzhevskaya AM, Ahmetov II, Astratenkova IV, Rogozkin VA (2008) Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Euro J Appl Physiol 103(6):631–634CrossRefGoogle Scholar
  27. 27.
    Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73(3):627–631CrossRefGoogle Scholar
  28. 28.
    Fattahi Z, Najmabadi H (2012) Prevalence of ACTN3 (the athlete gene) R577X polymorphism in Iranian population. Iran Red Crescent Med J 14(10):617–622Google Scholar
  29. 29.
    Yusof HA, Zainuddin Z, Rooney K, Muhamed AMC (2017) Distributions of ACE I/D and ACTN3 R/X gene polymorphisms in multi-ethnic malaysian and australian populations. Int J Public Health Clin Sci 4(5):125–138Google Scholar
  30. 30.
    Goel H, Mittal B (2007) ACTN3: athlete gene prevalence in North India. Curr Sci 92(1):84–86Google Scholar
  31. 31.
    Comas D, Calafell F, Mateu E, Perez-Lezaun A, Bosch E, Martinez-Arias R, Clarimon J, Facchini F, Fiori G, Luiselli D, Pettener D, Bertranpetit J (1998) Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations. Am J Hum Genet 63(6):1824–1838CrossRefGoogle Scholar
  32. 32.
    Niemi A-K, Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 13(8):965–969CrossRefGoogle Scholar
  33. 33.
    Eynon N, Durate JA, Oliveira J, Sagiv M, Yamin C, Meckel Y, Sagiv M, Goldhammer E (2009) ACTN3 R577X polymorphism and Israeli top-level athletes. Int J Sports Med 30(9):695–698CrossRefGoogle Scholar
  34. 34.
    Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L, Hurley BF (2008) The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet 16(3):391–394CrossRefGoogle Scholar
  35. 35.
    Massidda M, Vona G, Calò CM (2009) Association between the ACTN3 R577X polymorphism and artistic gymnastic performance in Italy. Genet Test Mol Biomarkers 13(3):377–380CrossRefGoogle Scholar
  36. 36.
    Kothari ST, Chheda Pratiksha, Chawla S, Chatterjee L, Chaudhry SK, Das BR (2011) ACTN3 R577X polymorphism in Asian Indian athletes. Int J Hum Genet 11(3):149–153CrossRefGoogle Scholar
  37. 37.
    Cieszczyk P, Eider J, Ostanek M, Arczewska A, Leonska-Duniec A, Sawczyn S, Ficek K, Krupecki K (2011) Association of the ACTN3 R577X polymorphism in polish power-orientated athletes. J Hum Kinet 28:55–61CrossRefGoogle Scholar
  38. 38.
    Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoffman EP (2005) ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol 99(1):154–163CrossRefGoogle Scholar
  39. 39.
    Moran CN, Yang N, Bailey MES, Tsiokanos A, Jamurtas A, MacArthur DG, North K, Pitsiladis YP, Wilson RH (2006) Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet 15(1):88–93CrossRefGoogle Scholar
  40. 40.
    Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, Thomis MA (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics 32(1):58–63CrossRefGoogle Scholar
  41. 41.
    Norman B, Esbjörnsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA (2009) Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol 106(3):959–965CrossRefGoogle Scholar
  42. 42.
    Shang X, Zhang F, Zhang L, Huang C (2012) ACTN3 R577X polymorphism and performance phenotypes in young Chinese male soldiers. J Sports Sci 30(3):255–260CrossRefGoogle Scholar
  43. 43.
    Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H (2014) The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand J Med Sci Sports 24:642–648CrossRefGoogle Scholar
  44. 44.
    Clarkson PM, Hoffman EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, Harmon B, Devaney JM (2005) ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol 99(2):564–569CrossRefGoogle Scholar
  45. 45.
    Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF (2007) Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci 62(2):206–212CrossRefGoogle Scholar
  46. 46.
    Ichinoseki-Sekine N, Naito H, Harima H, Nakagawa K, Katamoto S (2010) Effects of home-based resistance training among elderly Japanese women with diŠerent ACTN3 (R577X) genotypes. Juntendo Health Sports Sci 1(4):486–493Google Scholar
  47. 47.
    Gentil P, Pereira RW, Leite TKM, Bottaro M (2011) ACTN3 577X polymorphism and neuromuscular response to resistance training. J Sports Sci Med 10:393–399Google Scholar
  48. 48.
    Lucia A, Gómez-Gallego F, Santiago C, Bandrés F, Earnest C, Rabadán M, Alonso J, Hoyos J, Córdova A, Villa G, Foster C (2006) ACTN3 genotype in professional endurance cyclists. Int J Sports Med 27(11):880–884CrossRefGoogle Scholar
  49. 49.
    Santiago C, Rodriguez-Romo G, Gomez-Gallego F, Gonzalez-Freire M, Yvert T, Verde Z, Naclerio F, Altmae S, Esteve-Lanao J, Ruiz JR, Lucia A (2010) Is there an association between ACTN3 R577X polymorphism and muscle power phenotypes in young, non-athletic adults? Scand J Med Sci Sports 20(5):771–778CrossRefGoogle Scholar
  50. 50.
    McCauley T, Mastana SS, Folland JP (2010) ACE I/D and ACTN3 R/X polymorphisms and muscle function and muscularity of older Caucasian men. Euro J Appl Physiol 109(2):269–277CrossRefGoogle Scholar
  51. 51.
    Djarova T, Watson G, Basson A, Grace J, Cloete J, Ramakoaba A (2011) ACTN3 and TNF gene polymorphism association with C-reactive protein, uric acid, lactate and physical characteristics in young African cricket players. Afr J Biochem Res 5(1):22–27Google Scholar
  52. 52.
    Gineviciene V, Pranculis A, Jakaitiene A, Milasius K, Kucinskas V (2011) Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina (Kaunas) 47(5):284–290Google Scholar
  53. 53.
    Wang G, Mikami E, Chiu LL, Deason M, Fuku N, Miyachi H, Kaneoka K, Murakami H, Tanaka M, Hsieh LL, Caporossi D, Pigozzi F, Hilley A, Lee R, Galloway SD, Gulbin J, Rogozkin VA, Ahmetov I, Yang N, North KN, Ploutarhos S, Montgomery HE, Bailey ME, Pitsiladis YP (2013) Association analysis of ACE and ACTN3 in elite Caucasian and East Asian swimmers. Med Sci Sports Exerc 45(5):892–900CrossRefGoogle Scholar
  54. 54.
    Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, Rogozkin VA (2013) The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiol Sci 63(1):79–85CrossRefGoogle Scholar
  55. 55.
    Yusof HA, Singh R, Zainuddin Z, Rooney K, Muhamed AMC (2016) Alpha-Actinin-3 (ACTN3) R/X gene polymorphism and physical performance of multi-ethnic malaysian population. Int J Appl Exerc Physiol 5(1):18–30Google Scholar
  56. 56.
    MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN (2008) An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet 17(8):1076–1086CrossRefGoogle Scholar
  57. 57.
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332CrossRefGoogle Scholar
  58. 58.
    Shang X, Huang C, Chang Q, Zhang L, Huang T (2010) Association between the ACTN3 R577X polymorphism and female endurance athletes in China. Int J Sports Med 31(12):913–916CrossRefGoogle Scholar
  59. 59.
    Lucia A, Gomez-Gallego F, Santiago C, Perez M, Mate-Munoz JL, Chamorro-Vina C, Nogales-Gadea G, Foster C, Rubio JC, Andreu AL, Martin MA, Arenas J (2007) The 577X allele of the ACTN3 gene is associated with improved exercise capacity in women with McArdle’s disease. Neuromuscul Disord 17(8):603–610CrossRefGoogle Scholar
  60. 60.
    San Juan AF, Gomez-Gallego F, Canete S, Santiago C, Perez M, Lucia A (2006) Does complete deficiency of muscle a actinin 3 alter functional capacity in elderly women? A preliminary report. Br J Sports Med 40(1):e1CrossRefGoogle Scholar
  61. 61.
    Ahmetov II, Druzhevskaya AM, Astratenkova IV, Popov DV, Vinogradova OL, Rogozkin VA (2008) The ACTN3 R577X polymorphism in Russian endurance athletes. Br J Sports Med 44(9):649–652CrossRefGoogle Scholar
  62. 62.
    Gomez-Gallego F, Santiago C, Gonzalez-Freire M, Muniesa CA, Fernandez Del Valle M, Perez M, Foster C, Lucia A (2009) Endurance performance: genes or gene combinations? Int J Sports Med 30(1):66–72CrossRefGoogle Scholar
  63. 63.
    Döring FE, Onur S, Geisen U, Boulay MR, Pérusse L, Rankinen T, Rauramaa R, Wolfahrt B, Bouchard C (2010) ACTN3R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci 28(12):1355–1359CrossRefGoogle Scholar
  64. 64.
    Zilberman-Schapira G, Chen J, Gerstein M (2012) On sports and genes. Recent Pat DNA Gene Seq. 6:180–188CrossRefGoogle Scholar
  65. 65.
    Guilherme JPLF, Tritto ACC, North KN, Lancha Junior AH, Artioli GG (2014) Genetics and sport performance: current challenges and directions to the future. Rev Bras Educ Fís Esporte 28:177–193CrossRefGoogle Scholar
  66. 66.
    Massidda M, Corrias L, Scorcu M, Vona G, Calò MC (2012) ACTN-3 and ACE genotypes in elite male Italian athletes. Anthropol Rev 75(1):51–59CrossRefGoogle Scholar
  67. 67.
    Pimenta EM, Coelho DB, Cruz IR, Morandi RF, Veneroso CE, Azambuja Pussieldi G, Carvalho MRS, Silami-Garcia E, Paz Fernández JA (2011) The ACTN3 genotype in soccer players in response to acute eccentric training. Euro J Appl Physiol 112(4):1495–1503CrossRefGoogle Scholar
  68. 68.
    Mayne I (2006) Examination of the ACE and ACTN3 genes in UTC varsity athletes sedentary students. The University of Tennessee at ChattanoogaGoogle Scholar
  69. 69.
    Ahmetov II, Druzhevskaya AM, Lyubaeva EV, Popov DV, Vinogradova OL, Williams AG (2011) The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 96(12):1302–1310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  • Hazwani Ahmad Yusof
    • 1
    Email author
  • Wan Nor Syahirah Nasaruddin
    • 1
  • Ahmad Munir Che Muhamed
    • 1
  1. 1.Lifestyle Science Cluster, Advanced Medical and Dental InstituteUniversiti Sains MalaysiaKepala BatasMalaysia

Personalised recommendations