Assessment of Chemotherapy-Induced Organ Damage with Ga-68 Labeled Duramycin

  • Anne Rix
  • Natascha Ingrid Drude
  • Anna Mrugalla
  • Ferhan Baskaya
  • Koon Yan Pak
  • Brian Gray
  • Hans-Jürgen Kaiser
  • René Hany Tolba
  • Eva Fiegle
  • Wiltrud Lederle
  • Felix Manuel MottaghyEmail author
  • Fabian KiesslingEmail author
Research Article



Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity.


Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters.


In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology.


[68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.

Key words

Duramycin Apoptosis Toxicity PET/CT Chemotherapy 



This study was supported by BMBF (German Federal Ministry of Education and Research) project LiSyM (Grant No. 031L0041) and by DFG (German Research Foundation) research group FOR2591 (Grant No. 321137804).

Compliance with Ethical Standards

All animal experiments were performed according to German legal requirements and animal protection laws, and were approved by the Authority for Environment Conservation and Consumer Protection of the State of North Rhine-Westphalia (LANUV).

Competing Interests

Brian D. Gray and Koon Y. Pak are employees, F. Kiessling is scientific advisor of Molecular Targeting Technologies, Inc. At all times, the other authors had full control over the study data and interpretation. No other potential conflicts of interest relevant to this article exist.

Supplementary material

11307_2019_1417_MOESM1_ESM.pdf (261 kb)
ESM 1 (PDF 260 kb)


  1. 1.
    Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243:167–179CrossRefGoogle Scholar
  2. 2.
    Russell WMS, Burch RL, Hume CW (1959) The principles of humane experimental technique. Methuen, LondonGoogle Scholar
  3. 3.
    Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19CrossRefGoogle Scholar
  4. 4.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, de Laurenzi V, de Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, di Daniele N, di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, el-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541CrossRefGoogle Scholar
  5. 5.
    Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5:559–582CrossRefGoogle Scholar
  6. 6.
    Lederle W, Arns S, Rix A, Gremse F, Doleschel D, Schmaljohann J, Mottaghy FM, Kiessling F, Palmowski M (2011) Failure of annexin-based apoptosis imaging in the assessment of antiangiogenic therapy effects. EJNMMI Res 1:26CrossRefGoogle Scholar
  7. 7.
    Ogawa K, Aoki M (2014) Radiolabeled apoptosis imaging agents for early detection of response to therapy. ScientificWorldJournal 2014:732603CrossRefGoogle Scholar
  8. 8.
    Elvas F, Stroobants S, Wyffels L (2017) Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 22:971–987CrossRefGoogle Scholar
  9. 9.
    Johnson SE, Ugolkov A, Haney CR, Bondarenko G, Li L, Waters EA, Bergan R, Tran A, O'Halloran TV, Mazar A, Zhao M (2019) Whole-body imaging of cell death provides a systemic, minimally invasive, dynamic, and near-real time indicator for chemotherapeutic drug toxicity. Clin Cancer Res 25:1331–1342CrossRefGoogle Scholar
  10. 10.
    Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446CrossRefGoogle Scholar
  11. 11.
    Jadapalli JK, Wright GW, Kain V, Sherwani MA, Sonkar R, Yusuf N, Halade GV (2018) Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. Am J Physiol Heart Circ Physiol 315:H1091–H1100CrossRefGoogle Scholar
  12. 12.
    Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302CrossRefGoogle Scholar
  13. 13.
    Buggia I, Locatelli F, Regazzi MB, Zecca M (1994) Busulfan. Ann Pharmacother 28:1055–1062CrossRefGoogle Scholar
  14. 14.
    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378CrossRefGoogle Scholar
  15. 15.
    Banerjee S, Sinha K, Chowdhury S, Sil PC (2018) Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine. Chem Biol Interact 279:159–170CrossRefGoogle Scholar
  16. 16.
    Adwas AA, Elkhoely AA, Kabel AM, Abdel-Rahman MN, Eissa AA (2016) Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 22:36–43CrossRefGoogle Scholar
  17. 17.
    Molyneux G, Andrews M, Sones W, York M, Barnett A, Quirk E, Yeung W, Turton J (2011) Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol Toxicol 27:13–40CrossRefGoogle Scholar
  18. 18.
    Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24:3012–3020CrossRefGoogle Scholar
  19. 19.
    Gremse F, Stark M, Ehling J et al (2016) Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 6:328–341CrossRefGoogle Scholar
  20. 20.
    Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EAG (2003) Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 199:221–228CrossRefGoogle Scholar
  21. 21.
    Lederle W, Linde N, Heusel J, Bzyl J, Woenne EC, Zwick S, Skobe M, Kiessling F, Fusenig NE, Mueller MM (2010) Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am J Pathol 176:981–994CrossRefGoogle Scholar
  22. 22.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  23. 23.
    Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207CrossRefGoogle Scholar
  24. 24.
    Yao S, Hu K, Tang G, Liang X, du K, Nie D, Jiang S, Zang L (2014) Positron emission tomography imaging of cell death with [18F]FPDuramycin. Apoptosis 19:841–850CrossRefGoogle Scholar
  25. 25.
    Huang B, Fang W, Tian W et al (2012) Experimental study of labeling and biodistribution of 68Ga-NOTA-duramycin. Chin J Nucl Med Mol Imaging 32:286–290Google Scholar
  26. 26.
    Banerjee SR, Pomper MG (2013) Clinical applications of Gallium-68. Appl Radiat Isot 76:2–13CrossRefGoogle Scholar
  27. 27.
    Sanchez-Crespo A (2013) Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRefGoogle Scholar
  28. 28.
    Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ (2016) Preclinical evaluation of [68Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo - a comparison to [68Ga]pentixafor. EJNMMI Res 6:70CrossRefGoogle Scholar
  29. 29.
    Perse M, Veceric-Haler Z (2018) Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int 2018:1462802CrossRefGoogle Scholar
  30. 30.
    Qian Q, Nath KA, Wu Y, Daoud TM, Sethi S (2010) Hemolysis and acute kidney failure. Am J Kidney Dis 56:780–784CrossRefGoogle Scholar
  31. 31.
    Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212CrossRefGoogle Scholar
  32. 32.
    Muller PY, Dieterle F (2009) Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opin Drug Metab Toxicol 5:1023–1038CrossRefGoogle Scholar
  33. 33.
    Altai M, Perols A, Karlstrom AE et al (2012) Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA. Nucl Med Biol 39:518–529CrossRefGoogle Scholar
  34. 34.
    Malmberg J, Perols A, Varasteh Z, Altai M, Braun A, Sandström M, Garske U, Tolmachev V, Orlova A, Eriksson Karlström A (2012) Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. Eur J Nucl Med Mol Imaging 39:481–492CrossRefGoogle Scholar
  35. 35.
    Strand J, Honarvar H, Perols A, Orlova A, Selvaraju RK, Karlström AE, Tolmachev V (2013) Influence of macrocyclic chelators on the targeting properties of 68Ga-labeled synthetic affibody molecules: comparison with 111In-labeled counterparts. PLoS One 8:e70028CrossRefGoogle Scholar
  36. 36.
    Grozovsky R, Hoffmeister KM, Falet H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17:585–589CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • Anne Rix
    • 1
  • Natascha Ingrid Drude
    • 1
    • 2
  • Anna Mrugalla
    • 1
  • Ferhan Baskaya
    • 1
  • Koon Yan Pak
    • 3
  • Brian Gray
    • 3
  • Hans-Jürgen Kaiser
    • 2
  • René Hany Tolba
    • 4
  • Eva Fiegle
    • 1
  • Wiltrud Lederle
    • 1
  • Felix Manuel Mottaghy
    • 2
    • 5
    Email author
  • Fabian Kiessling
    • 1
    Email author
  1. 1.Institute for Experimental Molecular Imaging -Center for Biohybrid Medical Systems –CBMS, Medical FacultyRWTH Aachen UniversityAachenGermany
  2. 2.Department for Nuclear Medicine -Uniklinik RWTH Aachen, Medical FacultyRWTH Aachen UniversityAachenGermany
  3. 3.Molecular Targeting Technologies, Inc.West ChesterUSA
  4. 4.Institute for Laboratory Animal Science, Medical FacultyRWTH Aachen UniversityAachenGermany
  5. 5.Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands

Personalised recommendations