The Current Role of Microfluidics in Radiofluorination Chemistry

  • Karla-Anne Knapp
  • Michael L. Nickels
  • H. Charles ManningEmail author
Review Article


The current utilization of positron emission tomography (PET) imaging is limited due to the high costs associated with production facility start-up and operations; subsequently, there has been a movement towards microfluidic synthesis of radiolabeled imaging pharmaceuticals (tracers). In this review, we summarize the current status of microfluidic radiosynthesis units for producing fluorine-18 labeled PET imaging tracers, including a discussion of the relative strengths and weaknesses of such devices. In addition, we provide a brief overview of the radiotracers that have been produced using microfluidic devices to date. Finally, we discuss the prospects for the future of this field, including the potential of newly envisioned devices developed that may allow operators to easily synthesize specialized tracers for individual patient doses.

Key Words

Microfluidic Fluorine-18 Positron emission tomography Radiosynthesis 


Funding Information

This project was supported using funding from the Vanderbilt University Trans-Institutional Program (TIPs), Vanderbilt-Ingram Cancer Center (VICC), and Vanderbilt Center for Molecular Probes (CMP).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2019_1414_MOESM1_ESM.docx (82 kb)
ESM 1 (DOCX 81.8 kb)


  1. 1.
    Wang M-W, Lin W-Y, Liu K et al (2010) Microfluidics for positron emission tomography probe development. Mol Imaging 9:175–191CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Elizarov AM (2009) Microreactors for radiopharmaceutical synthesis. Lab Chip 9:1326. CrossRefPubMedGoogle Scholar
  3. 3.
    Fortt R, Gee AD (2013) Microfluidics: a golden opportunity for positron emission tomography? Future Med Chem 5:241–244CrossRefPubMedGoogle Scholar
  4. 4.
    Shen CK-F (2011) Microfluidic-assisted radiochemistry and PET probe synthesis. MI Gatew 5:1–5Google Scholar
  5. 5.
    Watts P, Pascali G, Salvadori PA (2012) Positron emission tomography radiosynthesis in microreactors. J Flow Chem 2:37–42CrossRefGoogle Scholar
  6. 6.
    Audrain H (2007) Positron emission tomography (PET) and microfluidic devices: a breakthrough on the microscale? Angew Chemie - Int Ed 46:1772–1775CrossRefGoogle Scholar
  7. 7.
    Pascali G, Watts P, Salvadori PA (2013) Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 40:776–787CrossRefPubMedGoogle Scholar
  8. 8.
    Miller PW (2009) Radiolabelling with short-lived PET (positron emission tomography) isotopes using microfluidic reactors. J Chem Technol Biotechnol 84:309–315CrossRefGoogle Scholar
  9. 9.
    Rensch C, Jackson A, Lindner S, Salvamoser R, Samper V, Riese S, Bartenstein P, Wängler C, Wängler B (2013) Microfluidics: a groundbreaking technology for PET tracer production? Molecules 18:7930–7956CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Keng P-Y, Esterby M, van Dam RM (2012) Emerging technologies for decentralized production of PET tracers. In: Hsieh C-H (ed) Positron emission tomography - current clinical and research aspects. Rijeka, InTech, pp 153–182Google Scholar
  11. 11.
    Rensch C, Lindner S, Salvamoser R, Leidner S, Böld C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wängler C, Wängler B (2014) A solvent resistant lab-on-chip platform for radiochemistry applications. Lab Chip 14:2556–2564CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang X, Liu F, Knapp K-A, Nickels ML, Manning HC, Bellan LM (2018) A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride. Lab Chip 18:1369–1377CrossRefPubMedGoogle Scholar
  13. 13.
    Matesic L, Kallinen A, Greguric I, Pascali G (2017) Dose-on-demand production of diverse 18 F-radiotracers for preclinical applications using a continuous flow microfluidic system. Nucl Med Biol 52:24–31CrossRefPubMedGoogle Scholar
  14. 14.
    Lu S-Y, Pike VW (2010) Synthesis of [18F]xenon difluoride as a radiolabeling reagent from [18F]fluoride ion in a micro-reactor and at production scale. J Fluor Chem 131:1032–1038CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zacheo A, Arima V, Pascali G et al (2011) Radioactivity resistance evaluation of polymeric materials for application in radiopharmaceutical production at microscale. Microfluid Nanofluidics 11:35–44CrossRefGoogle Scholar
  16. 16.
    Ungersboeck J, Philippe C, Mien LK et al (2011) Microfluidic preparation of [18F]FE@SUPPY and [18F]FE@SUPPY:2 - comparison with conventional radiosyntheses. Nucl Med Biol 38:427–434CrossRefPubMedGoogle Scholar
  17. 17.
    Lu S-Y, Watts P, Chin FT, Hong J, Musachio JL, Briard E, Pike VW (2004) Syntheses of 11C- and 18F-labeled carboxylic esters within a hydrodynamically-driven micro-reactor. Lab Chip 4:523. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Dekker BA, Zweit J (2006) Microfluidic technology for PET radiochemistry. Appl Radiat Isot 64:333–336CrossRefPubMedGoogle Scholar
  19. 19.
    Zizzari A, Arima V, Zacheo A, Pascali G, Salvadori PA, Perrone E, Mangiullo D, Rinaldi R (2011) Fabrication of SU-8 microreactors for radiopharmaceutical production. Microelectron Eng 88:1664–1667CrossRefGoogle Scholar
  20. 20.
    Wester H-J, Schoultz BW, Hultsch C, Henriksen G (2009) Fast and repetitive in-capillary production of [18F]FDG. Eur J Nucl Med Mol Imaging 36:653–658CrossRefPubMedGoogle Scholar
  21. 21.
    Lee C-C, Sui G, Elizarov AM et al (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:1793–1796CrossRefPubMedGoogle Scholar
  22. 22.
    Maltezos G, Garcia E, Hanrahan G, Gomez FA, Vyawhare S, van Dam RM, Chen Y, Scherer A (2007) Design and fabrication of chemically robust three-dimensional microfluidic valves. Lab Chip 7:1209. CrossRefPubMedGoogle Scholar
  23. 23.
    Keng P-Y, Chen S, Ding H, Sadeghi S, Shah GJ, Dooraghi A, Phelps ME, Satyamurthy N, Chatziioannou AF, Kim CJC, van Dam RM (2012) Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci U S A 109:690–695CrossRefPubMedGoogle Scholar
  24. 24.
    De Leonardis F, Pascali G, Salvadori PA et al (2011) On-chip pre-concentration and complexation of [18F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of positron emission tomography tracers. J Chromatogr A 1218:4714–4719CrossRefPubMedGoogle Scholar
  25. 25.
    Oh JH, Lee BN, Nam KR et al (2011) Design features of microfluidic reactor for [18F]FDG radiopharmaceutical synthesis. AIP Conf Proc 1336.
  26. 26.
    Saiki H, Iwata R, Nakanishi H, Wong R, Ishikawa Y, Furumoto S, Yamahara R, Sakamoto K, Ozeki E (2010) Electrochemical concentration of no-carrier-added [18F]fluoride from [18O]water in a disposable microfluidic cell for radiosynthesis of 18F-labeled radiopharmaceuticals. Appl Radiat Isot 68:1703–1708CrossRefPubMedGoogle Scholar
  27. 27.
    Ungersboeck J, Richter S, Collier L, Mitterhauser M, Karanikas G, Lanzenberger R, Dudczak R, Wadsak W (2012) Radiolabeling of [18F]altanserin — a microfluidic approach. Nucl Med Biol 39:1087–1092CrossRefPubMedGoogle Scholar
  28. 28.
    Anderson H, Pillarsetty N, Cantorias M, Lewis JS (2010) Improved synthesis of 2′-deoxy-2′-[18F]-fluoro-1-β-d-arabinofuranosyl-5-iodouracil ([18F]-FIAU). Nucl Med Biol 37:439–442CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Salvador B, Luque A, Fernandez-Maza L, Corral A, Orta D, Fernandez I, Quero JM (2017) Disposable PDMS chip with integrated [18F]fluoride pre-concentration cartridge for radiopharmaceuticals. J Microelectromech Syst 26:1442–1448CrossRefGoogle Scholar
  30. 30.
    Salvador B, Luque A, Quero JM, et al. (2017) Integrated anion-exchange cartridge for [18F]F-preconcentration in a PDMS radiopharmacy chip. In: 2017 Spanish conference on electron devices (CDE). IEEE, pp 1–4Google Scholar
  31. 31.
    Sadeghi S, Ly J, Deng Y, Van Dam RM (2010) A robust platinum-based electrochemical micro flow cell for drying of [18F]fluoride for pet tracer synthesis. In: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010. pp 318–320Google Scholar
  32. 32.
    Lu S, Clements JT, Gilde MJ, Prak A, Watts P, Pike VW (2007) Separation of [18F]fluoride ion from proton-irradiated [18O]water within an EOF-driven micro-reactor powered by the Capilix Capella™ platform. J Label Compd Radiopharm 50:597–599CrossRefGoogle Scholar
  33. 33.
    Tseng W-Y, Cho J, Ma X, et al. (2010) PDMS evaporation chip to concentrate [18F] fluoride for synthesis of PET tracers in microfluidics. In: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Pp 1010–1012Google Scholar
  34. 34.
    Elizarov AM, van Dam RM, Shin Y-S, Kolb HC, Padgett HC, Stout D, Shu J, Huang J, Daridon A, Heath JR (2010) Design and optimization of coin-shaped microreactor chips for PET radiopharmaceutical synthesis. J Nucl Med 51:282–287CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tseng W-Y, Cho J, Ma X et al (2010) Toward reliable synthesis of radiotracers for positron emission tomography in PDMS microfluidic chips: study and optimization of the [18F] fluoride drying process. NSTI Nanotechnol Conf Expo 2:472–475Google Scholar
  36. 36.
    Cvetković BZ, Lade O, Marra L, Arima V, Rinaldi R, Dittrich PS (2012) Nitrogen supported solvent evaporation using continuous-flow microfluidics. RSC Adv 2:11117CrossRefGoogle Scholar
  37. 37.
    Wong R, Iwata R, Saiki H, Furumoto S, Ishikawa Y, Ozeki E (2012) Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds. Appl Radiat Isot 70:193–199CrossRefPubMedGoogle Scholar
  38. 38.
    Chen S, Javed MR, Kim H-K, Lei J, Lazari M, Shah GJ, van Dam RM, Keng PY, Kim CJ“CJ” (2014) Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab Chip 14:902–910CrossRefPubMedGoogle Scholar
  39. 39.
    Rensch C, Wängler B, Yaroshenko A et al (2012) Autoradiolysis suppression in microfluidic channels. J Nucl Med 53:574Google Scholar
  40. 40.
    Bejot R, Elizarov AM, Ball E, Zhang J, Miraghaie R, Kolb HC, Gouverneur V (2011) Batch-mode microfluidic radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate for protein labelling. J Label Compd Radiopharm 54:117–122CrossRefGoogle Scholar
  41. 41.
    Keng P-Y, van Dam RM (2015) Digital microfluidics: a new paradigm for radiochemistry. Mol Imaging 14:13–14CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Steel C, O’Brien AT, Luthra SK, Brady F (2007) Automated PET radiosyntheses using microfluidic devices. J Label Compd Radiopharm 50:308–311CrossRefGoogle Scholar
  43. 43.
    Lebedev A, Miraghaie R, Kotta K, Ball CE, Zhang J, Buchsbaum MS, Kolb HC, Elizarov A (2013) Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. Lab Chip 13:136–145CrossRefPubMedGoogle Scholar
  44. 44.
    Zheng M-Q, Collier TL, Bois F et al (2015) Synthesis of [18F]FMISO in a flow-through microfluidic reactor: development and clinical application. Nucl Med Biol 42:578–584CrossRefPubMedGoogle Scholar
  45. 45.
    Arima V, Pascali G, Lade O, Kretschmer HR, Bernsdorf I, Hammond V, Watts P, de Leonardis F, Tarn MD, Pamme N, Cvetkovic BZ, Dittrich PS, Vasovic N, Duane R, Jaksic A, Zacheo A, Zizzari A, Marra L, Perrone E, Salvadori PA, Rinaldi R (2013) Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab Chip 13:2328CrossRefPubMedGoogle Scholar
  46. 46.
    Yokell DL, Leece AK, Lebedev A, Miraghaie R, Ball CE, Zhang J, Kolb H, Elizarov A, Mahmood U (2012) Microfluidic single vessel production of hypoxia tracer 1H-1-(3-[18F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole ([18F]-FMISO). Appl Radiat Isot 70:2313–2316CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu K, Lepin EJ, Wang M-W et al (2011) Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Mol Imaging 10(168–76):1–7Google Scholar
  48. 48.
    Ding H, Sadeghi S, Shah GJ, Chen S, Keng PY, Kim CJ“CJ”, van Dam RM (2012) Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips. Lab Chip 12:3331–3340CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang J, Chao PH, Hanet S, van Dam RM (2017) Performing multi-step chemical reactions in microliter-sized droplets by leveraging a simple passive transport mechanism. Lab Chip 17:4342–4355CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sergeev M, Lazari M, Morgia F, Collins J, Javed MR, Sergeeva O, Jones J, Phelps ME, Lee JT, Keng PY, van Dam RM (2018) Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography. Commun Chem 1:10CrossRefGoogle Scholar
  51. 51.
    Shah GJ, Tata U, van Dam RM (2014) Automation and interfaces for chemistry and biochemistry in digital microfluidics. TECHNOLOGY 02:83–100CrossRefGoogle Scholar
  52. 52.
    Wang H, Chen L, Sun L (2017) Digital microfluidics: a promising technique for biochemical applications. Front Mech Eng 12:510–525CrossRefGoogle Scholar
  53. 53.
    Fiel SA, Yang H, Schaffer P, Weng S, Inkster JAH, Wong MCK, Li PCH (2015) Magnetic droplet microfluidics as a platform for the concentration of [18F]fluoride and radiosynthesis of sulfonyl [18F]fluoride. ACS Appl Mater Interfaces 7:12923–12929CrossRefPubMedGoogle Scholar
  54. 54.
    De Leonardis F, Pascali G, Salvadori PA, et al. (2010) Microfluidic modules for [18F-] activation - towards an integrated modular lab on a chip for pet radiotracer synthesis. In: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010. pp 1604–1606Google Scholar
  55. 55.
    Kimura H, Tomatsu K, Saiki H, Arimitsu K, Ono M, Kawashima H, Iwata R, Nakanishi H, Ozeki E, Kuge Y, Saji H (2016) Continuous-flow synthesis of N-succinimidyl 4-[18F]fluorobenzoate using a single microfluidic chip. PLoS One 11:e0159303CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Javed MR, Chen S, Kim H-K, Wei L, Czernin J, Kim CJC, Michael van Dam R, Keng PY (2014) Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med 55:321–328CrossRefPubMedGoogle Scholar
  57. 57.
    Tarn MD, Pascali G, De Leonardis F et al (2013) Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. J Chromatogr A 1280:117–121CrossRefPubMedGoogle Scholar
  58. 58.
    Tseng W-Y, van Dam RM (2014) Compact microfluidic device for rapid concentration of PET tracers. Lab Chip 14:2293–2302CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chao PH, Collins J, Argus JP, Tseng WY, Lee JT, Michael van Dam R (2017) Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. Lab Chip 17:1802–1816CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lu S-Y, Giamis AM, Pike VW (2009) Synthesis of [18F]fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies. Curr Radiopharm 2:nihpa81093Google Scholar
  61. 61.
    Cho J, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757–6771CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Taggart MP, Tarn MD, Esfahani MMN, Schofield DM, Brown NJ, Archibald SJ, Deakin T, Pamme N, Thompson LF (2016) Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. Lab Chip 16:1605–1616CrossRefPubMedGoogle Scholar
  63. 63.
    Taggart MP, Tarn MD, Esfahani MMN, et al. (2015) On-chip detection of radioactivity via silicon-based sensors for the quality control testing of radiopharmaceuticals. 19th Int Conf Miniaturized Syst Chem Life Sci 1849–1851Google Scholar
  64. 64.
    Cheung S, Ly J, Lazari M, Sadeghi S, Keng PY, van Dam RM (2014) The separation and detection of PET tracers via capillary electrophoresis for chemical identity and purity analysis. J Pharm Biomed Anal 94:12–18CrossRefPubMedGoogle Scholar
  65. 65.
    Ha NS, Ly J, Jones J, Cheung S, van Dam RM (2017) Novel volumetric method for highly repeatable injection in microchip electrophoresis. Anal Chim Acta 985:129–140. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ly J, Ha NS, Cheung S, van Dam RM (2018) Toward miniaturized analysis of chemical identity and purity of radiopharmaceuticals via microchip electrophoresis. Anal Bioanal Chem 410:2423–2436. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tarn MD, Brown NJ, Pamme N, Archibald SJ (2015) Integrated microfluidic radiotracer quality control: miniaturised on-chip absorbance spectroscopy. J Label Compd Radiopharm 58:S20CrossRefGoogle Scholar
  68. 68.
    Tarn MD, Esfahani MMN, Patinglag L, et al (2017) Microanalytical devices towards integrated quality control testing of [18F] FDG radiotracer. 559–560Google Scholar
  69. 69.
    Tarn MD, Kızılyer NY, Esfahani MMN, et al (2018) Plastic scintillator-based microfluidic devices for miniaturized detection of positron emission tomography radiopharmaceuticals. Chem - A Eur J 1–6Google Scholar
  70. 70.
    Ha N, Sadeghi S, van Dam R (2017) Recent progress toward microfluidic quality control testing of radiopharmaceuticals. Micromachines 8:337CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA (2011) Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol 38:637–644CrossRefPubMedGoogle Scholar
  72. 72.
    Telu S, Chun J-H, Siméon FG, Lu S, Pike VW (2011) Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org Biomol Chem 9:6629CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pascali G, Pitzianti S, Saccomanni G et al (2011) Initial studies on the effect of water in microfluidic radiofluorinations. J Label Compd Radiopharm S502Google Scholar
  74. 74.
    Chun J-H, Lu S-Y, Pike VW (2011) Rapid and efficient radiosyntheses of meta-substituted [18F]fluoroarenes from [18F]fluoride ion and diaryliodonium tosylates within a microreactor. European J Org Chem 2011:4439–4447CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bouvet VR, Wuest M, Tam P-H, Wang M, Wuest F (2012) Microfluidic technology: an economical and versatile approach for the synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine ([18]FET). Bioorg Med Chem Lett 22:2291–2295CrossRefPubMedGoogle Scholar
  76. 76.
    Selivanova SV, Mu L, Ungersboeck J, Stellfeld T, Ametamey SM, Schibli R, Wadsak W (2012) Single-step radiofluorination of peptides using continuous flow microreactor. Org Biomol Chem 10:3871CrossRefPubMedGoogle Scholar
  77. 77.
    Akula MR, Collier TL, Kabalka GW (2012) Automated microfluidic synthesis of [F-18]FSB. J Nucl Med 53:576Google Scholar
  78. 78.
    Cumming R, Knight L, Sutcliffe J (2012) Fluorine-18 radiolabeling of peptides using a microfluidic flow chemistry device. J Nucl Med 53:573Google Scholar
  79. 79.
    Richter S, Bouvet VR, Wuest M, Bergmann R, Steinbach J, Pietzsch J, Neundorf I, Wuest F (2012) 18F-labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells. Nucl Med Biol 39:1202–1212CrossRefPubMedGoogle Scholar
  80. 80.
    Chun J-H, Pike VW (2012) Selective syntheses of no-carrier-added 2- and 3-[18F]fluorohalopyridines through the radiofluorination of halopyridinyl(4′-methoxyphenyl)iodonium tosylates. Chem Commun 48:9921CrossRefGoogle Scholar
  81. 81.
    Dahl K, Schou M, Halldin C (2012) Radiofluorination and reductive amination using a microfluidic device. J Label Compd Radiopharm 55:455–459CrossRefGoogle Scholar
  82. 82.
    Dewkar GK, Sundaresan G, Lamichhane N, Hirsch J, Thadigiri C, Collier T, Hartman MCT, Vaidyanthan G, Zweit J (2013) Microfluidic radiosynthesis and biodistribution of [18F] 2-(5-fluoro-pentyl)-2-methyl malonic acid. J Label Compd Radiopharm 56:289–294CrossRefGoogle Scholar
  83. 83.
    Liang SH, Collier TL, Rotstein BH, Lewis R, Steck M, Vasdev N (2013) Rapid microfluidic flow hydrogenation for reduction or deprotection of 18F-labeled compounds. Chem Commun 49:8755–8757CrossRefGoogle Scholar
  84. 84.
    Liang SH, Yokell DL, Jackson RN, Rice PA, Callahan R, Johnson KA, Alagille D, Tamagnan G, Lee Collier T, Vasdev N (2014) Microfluidic continuous-flow radiosynthesis of [ 18 F]FPEB suitable for human PET imaging. Med Chem Commun 5:432–435CrossRefGoogle Scholar
  85. 85.
    Cheung Y-Y, Nickels ML, Tang D, Buck JR, Manning HC (2014) Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4 H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer. Bioorg Med Chem Lett 24:4466–4471Google Scholar
  86. 86.
    Liang SH, Yokell DL, Normandin MD, et al. (2014) First human use of a radiopharmaceutical prepared by continuous-flow microfluidic radiofluorination: proof of concept with the tau imaging agent [18F]T807. Mol Imaging 13:Google Scholar
  87. 87.
    Calderwood S, Collier TL, Gouverneur V, Liang SH, Vasdev N (2015) Synthesis of 18F-arenes from spirocyclic iodonium(III) ylides via continuous-flow microfluidics. J Fluor Chem 178:249–253CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Philippe C, Haeusler D, Scherer T et al (2016) [18F]FE@SNAP—a specific PET tracer for melanin-concentrating hormone receptor 1 imaging? EJNMMI Res 6:31CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Collier TL, Liang SH, Mann JJ, Vasdev N, Kumar JSD (2017) Microfluidic radiosynthesis of [18F]FEMPT, a high affinity PET radiotracer for imaging serotonin receptors. Beilstein J Org Chem 13:2922–2927CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang B, Pascali G, Wyatt N, Matesic L, Klenner MA, Sia TR, Guastella AJ, Massi M, Robinson AJ, Fraser BH (2018) Synthesis, bioconjugation and stability studies of [18F]ethenesulfonyl fluoride. J Label Compd Radiopharm 61:847–856CrossRefGoogle Scholar
  91. 91.
    Matesic L, Greguric I, Pascali G (2018) Microfluidic radiosynthesis of the muscarinic M2 imaging agent [18F]FP-TZTP*. Aust J ChemGoogle Scholar
  92. 92.
    Briard E, Zoghbi SS, Siméon FG et al (2009) Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 52:688–699CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chun J-H, Lu S-Y, Lee Y-S, Pike VW (2010) Fast and high-yield microreactor syntheses of ortho-substituted [18F]fluoroarenes from reactions of [18F]fluoride ion with diaryliodonium salts. J Org Chem 75:3332–3338CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Pascali G, Mazzone G, Saccomanni G, Manera C, Salvadori PA (2010) Microfluidic approach for fast labeling optimization and dose-on-demand implementation. Nucl Med Biol 37:547–555CrossRefPubMedGoogle Scholar
  95. 95.
    Bouvet VR, Wuest M, Wiebe LI, Wuest F (2011) Synthesis of hypoxia imaging agent 1-(5-deoxy-5-fluoro-α-d-arabinofuranosyl)-2-nitroimidazole using microfluidic technology. Nucl Med Biol 38:235–245CrossRefPubMedGoogle Scholar
  96. 96.
    Pascali G, Berton A, DeSimone M, Wyatt N, Matesic L, Greguric I, Salvadori PA (2014) Hardware and software modifications on the Advion NanoTek microfluidic platform to extend flexibility for radiochemical synthesis. Appl Radiat Isot 84:40–47CrossRefPubMedGoogle Scholar
  97. 97.
    Liu Y, Tian M, Zhang H (2013) Microfluidics for synthesis of peptide-based pet tracers. Biomed Res Int 2013:839683PubMedPubMedCentralGoogle Scholar
  98. 98.
    Javed MR, Chen S, Lei J, Collins J, Sergeev M, Kim HK, Kim CJ, van Dam RM, Keng PY (2014) High yield and high specific activity synthesis of [18F]fallypride in a batch microfluidic reactor for micro-PET imaging. Chem Commun 50:1192–1194CrossRefGoogle Scholar
  99. 99.
    Pascali G, Matesic L (2016) How far are we from dose on demand of short-lived radiopharmaceuticals? In: Kuge Y, Shiga T, Tamaki N (eds) Perspectives on nuclear medicine for molecular diagnosis and integrated therapy. Springer Japan, Tokyo, pp 79–92CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • Karla-Anne Knapp
    • 1
    • 2
    • 3
  • Michael L. Nickels
    • 2
    • 3
    • 4
  • H. Charles Manning
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of ChemistryVanderbilt UniversityNashvilleUSA
  2. 2.Center for Molecular ProbesVanderbilt University Medical CenterNashvilleUSA
  3. 3.Vanderbilt Institute for Imaging ScienceVanderbilt University Medical CenterNashvilleUSA
  4. 4.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
  5. 5.Vanderbilt-Ingram Cancer CenterVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations