Quantitative Assessment of Age-Associated Alterations in Brain Vasculature in Wild-Type Mice and in Bigenic Mice that Model Alzheimer’s Disease

  • Kristof Govaerts
  • Tom Dresselaers
  • Fred Van Leuven
  • Uwe HimmelreichEmail author
Research Article



Vascular dysfunction is a major hallmark of Alzheimer’s disease (AD). However, studies that investigated vascular dysfunction in mice modeling AD using magnetic resonance angiography (MRA) are typically limited to qualitative and/or scoring-based paradigms, which are labor-intensive and observer-dependent.


We developed and validated a semi-automatic MRA processing pipeline and applied this to high-resolution in vivo MRA images acquired on a 9.4T small animal MRI scanner. We assessed vascular morphology at 3, 6, and 12 months in wild-type (WT) and bigenic (APP.V717IxTau.P301L: biAT) mice.


Vessel radius or length can increase with age regardless of genotype depending on the respective vessel. We also observed significantly lower internal carotid artery length in biAT mice compared to WT.


The results demonstrate that even subtle changes in vessel morphology can be noninvasively quantified. This is of great interest for AD, but also to other models of neurodegenerative diseases involving macrovascular dysfunction.

Key words

Alzheimer’s disease Magnetic resonance angiography Neurovasculature Segmentation Morphometry Aging 


Funding Information

The European Commission supported the INMiND project (FP7, Health-F2-2011-278850) and the PANA project (H2020-NMP-12-2015-686009). The Flemish government (Innovation through Science and Technology) supported the IWT MIRIAD (SBO 130065) project. The Research Foundation Flanders supported KG (FWO scholarship 11N0714N) and TD (FWO-KaN University of Leuven supported the Program Financing IMIR (10/017).

Compliance with Ethical Standards

Experiments were performed in accordance with regional, national, and international standards on animal welfare, in particular European Union Directive 2010/63/EU, and approved and overseen by the Animal Care and Ethical Committees of the University of Leuven.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11307_2019_1402_MOESM1_ESM.pdf (423 kb)
ESM 1 (PDF 422 kb)


  1. 1.
    Zhang B, Gu GJ, Jiang H, Guo Y, Shen X, Li B, Zhang W (2017) The value of whole-brain CT perfusion imaging and CT angiography using a 320-slice CT scanner in the diagnosis of MCI and AD patients. Eur Radiol 27:4756–4766CrossRefGoogle Scholar
  2. 2.
    Lavina B (2016) Brain vascular imaging techniques. Int J Mol Sci 18:70CrossRefGoogle Scholar
  3. 3.
    Schellong SM, Abolmaali N, Voigts B, Stelzner C (2017) Imaging of vessels supplying the brain. Internist (Berl) 58:758–765CrossRefGoogle Scholar
  4. 4.
    Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35:1409–1423CrossRefGoogle Scholar
  5. 5.
    Starosolski Z, Villamizar CA, Rendon D, Paldino MJ, Milewicz DM, Ghaghada KB, Annapragada AV (2015) Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Sci Rep 5:10178CrossRefGoogle Scholar
  6. 6.
    Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434CrossRefGoogle Scholar
  7. 7.
    Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120:287–296CrossRefGoogle Scholar
  8. 8.
    Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV (2016) Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol 131:687–707CrossRefGoogle Scholar
  9. 9.
    El Tayara Nel T, Delatour B, Volk A, Dhenain M (2010) Detection of vascular alterations by in vivo magnetic resonance angiography and histology in APP/PS1 mouse model of Alzheimer’s disease. Magn Reson Mater Phys 23:53–64CrossRefGoogle Scholar
  10. 10.
    Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M, Krucker T (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23:8453–8459CrossRefGoogle Scholar
  11. 11.
    Kara F, Dongen ES, Schliebs R, Buchem MA, Groot HJ, Alia A (2012) Monitoring blood flow alterations in the Tg2576 mouse model of Alzheimer’s disease by in vivo magnetic resonance angiography at 17.6 T. Neuroimage 60:958–966CrossRefGoogle Scholar
  12. 12.
    Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, van Leuven F (2008) Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172:786–798CrossRefGoogle Scholar
  13. 13.
    Struys T, Govaerts K, Oosterlinck W, Casteels C, Bronckaers A, Koole M, van Laere K, Herijgers P, Lambrichts I, Himmelreich U, Dresselaers T (2017) In vivo evidence for long-term vascular remodeling resulting from chronic cerebral hypoperfusion in mice. J Cereb Blood Flow Metab 37:726–739CrossRefGoogle Scholar
  14. 14.
    Chong SA, Benilova I, Shaban H, de Strooper B, Devijver H, Moechars D, Eberle W, Bartic C, van Leuven F, Callewaert G (2011) Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer’s disease: a multi-electrode array study. Neurobiol Dis 44:284–291CrossRefGoogle Scholar
  15. 15.
    Kremer A (2012) Characterization and validation of transgenic mice as models for different pathological aspects of Alzheimer’s disease. Leuven university press, LeuvenGoogle Scholar
  16. 16.
    Tustison NJ, Avants BB, Cook PA, Yuanjie Zheng, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRefGoogle Scholar
  17. 17.
    Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  18. 18.
    Muyllaert D, Terwel D, Borghgraef P, Devijver H, Dewachter I, van Leuven F (2006) Transgenic mouse models for Alzheimer’s disease: the role of GSK-3B in combined amyloid and tau-pathology. Rev Neurol (Paris) 162:903–907CrossRefGoogle Scholar
  19. 19.
    Van Dorpe J, Smeijers L, Dewachter I et al (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157:1283–1298CrossRefGoogle Scholar
  20. 20.
    Van Broeck B, Vanhoutte G, Cuijt I et al (2008) Reduced brain volumes in mice expressing APP-Austrian mutation but not in mice expressing APP-Swedish-Austrian mutations. Neurosci Lett 447:143–147CrossRefGoogle Scholar
  21. 21.
    Badhwar A, Lerch JP, Hamel E, Sled JG (2013) Impaired structural correlates of memory in Alzheimer’s disease mice. Neuroimage Clin 3:290–300CrossRefGoogle Scholar
  22. 22.
    Hebert F, Grand'maison M, Ho MK et al (2012) Cortical atrophy and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiol AgingGoogle Scholar
  23. 23.
    Govaerts K, Lechat B, Struys T, Kremer A, Borghgraef P, van Leuven F, Himmelreich U, Dresselaers T (2019) Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer’s disease with amyloid and tau pathology. NMR Biomed 32:e4037CrossRefGoogle Scholar
  24. 24.
    Niwa K, Porter VA, Kazama K, Cornfield D, Carlson GA, Iadecola C (2001) A beta-peptides enhance vasoconstriction in cerebral circulation. Am J Physiol Heart Circ Physiol 281:H2417–H2424CrossRefGoogle Scholar
  25. 25.
    Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci U S A 105:3587–3592CrossRefGoogle Scholar
  26. 26.
    Figueiredo G, Boll H, Kramer M, Groden C, Brockmann MA (2012) In vivo X-ray digital subtraction and CT angiography of the murine cerebrovasculature using an intra-arterial route of contrast injection. AJNR Am J Neuroradiol 33:1702–1709CrossRefGoogle Scholar
  27. 27.
    Govaerts K, Dresselaers T, Struys T et al (2013) Towards quantitative evaluation of vascular alterations in mice using MR angiography. Front Neuroinform.
  28. 28.
    Yamamoto T, Okada T, Fushimi Y, Yamamoto A, Fujimoto K, Okuchi S, Fukutomi H, Takahashi JC, Funaki T, Miyamoto S, Stalder AF, Natsuaki Y, Speier P, Togashi K (2018) Magnetic resonance angiography with compressed sensing: an evaluation of moyamoya disease. PLoS One 13:e0189493CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • Kristof Govaerts
    • 1
  • Tom Dresselaers
    • 1
  • Fred Van Leuven
    • 2
  • Uwe Himmelreich
    • 1
    Email author
  1. 1.Biomedical MRI/ MoSAIC, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
  2. 2.LEGTEGG, Department of Human GeneticsKU LeuvenLeuvenBelgium

Personalised recommendations