Comparison of [18F]Fluoroethyltyrosine PET and Sodium MRI in Cerebral Gliomas: a Pilot Study

  • Aliaksandra Shymanskaya
  • Wieland A. WorthoffEmail author
  • Gabriele Stoffels
  • Johannes Lindemeyer
  • Bernd Neumaier
  • Philipp Lohmann
  • Norbert Galldiks
  • Karl-Josef Langen
  • N. Jon Shah
Research Article



Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) improves the diagnostics of cerebral gliomas compared with conventional magnetic resonance imaging (MRI). Sodium MRI is an evolving method to assess tumor metabolism. In this pilot study, we explored the relationship of [18F]FET-PET and sodium MRI in patients with cerebral gliomas in relation to the mutational status of the enzyme isocitrate dehydrogenase (IDH).


Ten patients with untreated cerebral gliomas and one patient with a recurrent glioblastoma (GBM) were investigated by dynamic [18F]FET-PET and sodium MRI using an enhanced simultaneous single-quantum- and triple-quantum-filtered imaging of 23Na (SISTINA) sequence to estimate total (NaT), weighted non-restricted (NaNR, mainly extracellular), and restricted (NaR, mainly intracellular) sodium in tumors and normal brain tissue. [18F]FET uptake and sodium parameters in tumors with a different IDH mutational status were compared. After biopsy or resection, histology and the IDH mutational status were determined neuropathologically.


NaT (p = 0.05), tumor-to-brain ratios (TBR) of NaT (p = 0.02), NaNR (p = 0.003), and the ratio of NaT/NaR (p < 0.001) were significantly higher in IDH-mutated than in IDH-wild-type gliomas (n = 5 patients each) while NaR was significantly lower in IDH-mutated gliomas (p = 0.01). [18F]FET parameters (TBR, time-to-peak) were not predictive of IDH status in this small cohort of patients. There was no obvious relationship between sodium distribution and [18F]FET uptake. The patient with a recurrent GBM exhibited an additional radiation injury with strong abnormalities in sodium MRI.


Sodium MRI appears to be more strongly related to the IDH mutational status than are [18F]FET-PET parameters. A further evaluation of the combination of the two methods in a larger group of high- and low-grade gliomas seems promising.

Key words

MRI FET-PET Sodium imaging Gliomas IDH mutational status 



The authors thank Petra Engels, Elke Bechholz, Anita Köth, Suzanne Schaden, Elisabeth Theelen, Silke Frensch, Kornelia Frey, Stefan Schwan, and Lutz Tellmann for assistance in the patient studies; Johannes Ermert, Silke Grafmüller, Erika Wabbals and Sascha Rehbein for radiosynthesis of [18F]FET.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed written consent was obtained from all individual participants included in the study.

Supplementary material

11307_2019_1349_MOESM1_ESM.pdf (170 kb)
ESM 1 (PDF 169 kb)


  1. 1.
    Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 16(Suppl 4):iv1–i63CrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489CrossRefGoogle Scholar
  3. 3.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  4. 4.
    Langen KJ, Galldiks N, Hattingen E, Shah NJ (2017) Advances in neuro-oncology imaging. Nat Rev Neurol 13:279–289CrossRefGoogle Scholar
  5. 5.
    Leu K, Ott GA, Lai A, Nghiemphu PL, Pope WB, Yong WH, Liau LM, Cloughesy TF, Ellingson BM (2017) Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas. J Neuro-Oncol 134:177–188CrossRefGoogle Scholar
  6. 6.
    Xing Z, Yang X, She D, Lin Y, Zhang Y, Cao D (2017) Noninvasive assessment of IDH mutational status in World Health Organization grade II and III astrocytomas using DWI and DSC-PWI combined with conventional MR imaging. AJNR Am J Neuroradiol 38:1138–1144CrossRefGoogle Scholar
  7. 7.
    Kunz M, Albert NL, Unterrainer M et al (2018) Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro-OncologyGoogle Scholar
  8. 8.
    Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, Bartenstein P, Schüller U, Tonn JC, Albert NL (2018) Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncology 20:279–288CrossRefGoogle Scholar
  9. 9.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, Neumaier B, Shah NJ, Langen KJ, Galldiks N (2018) Static and dynamic 18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging 45:443–451CrossRefGoogle Scholar
  10. 10.
    Unterrainer M, Winkelmann I, Suchorska B, Giese A, Wenter V, Kreth FW, Herms J, Bartenstein P, Tonn JC, Albert NL (2018) Biological tumour volumes of gliomas in early and standard 20-40 min 18F-FET PET images differ according to IDH mutation status. Eur J Nucl Med Mol Imaging 45:1242–1249CrossRefGoogle Scholar
  11. 11.
    Rohrich M, Huang K, Schrimpf D et al (2018) Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas. Eur J Nucl Med Mol Imaging 45:1573–1584CrossRefGoogle Scholar
  12. 12.
    Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, Bizzi A, Navarria P, Ascolese AM, Rudà R, Fernandes B, Pessina F, Grimaldi M, Simonelli M, Rossi M, Alfieri T, Zucali PA, Scorsetti M, Bello L, Chiti A (2017) Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging 44:1155–1164CrossRefGoogle Scholar
  13. 13.
    Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 38:511–529CrossRefGoogle Scholar
  14. 14.
    Shah NJ, Worthoff WA, Langen KJ (2016) Imaging of sodium in the brain: a brief review. NMR Biomed 29:162–174CrossRefGoogle Scholar
  15. 15.
    Murphy E, Eisner DA (2009) Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 104:292–303CrossRefGoogle Scholar
  16. 16.
    Thulborn KR, Lu A, Atkinson IC, Damen F, Villano JL (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19:615–624CrossRefGoogle Scholar
  17. 17.
    Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227:529–537CrossRefGoogle Scholar
  18. 18.
    Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Investig Radiol 46:539–547CrossRefGoogle Scholar
  19. 19.
    Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ (2013) Simultaneous single-quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn Reson Med 69:1691–1696CrossRefGoogle Scholar
  20. 20.
    Worthoff WA, Shymanskaya A, Shah NJ (2019) Relaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI. Magn Reson Med 81:303–315CrossRefGoogle Scholar
  21. 21.
    Jaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum Nmr-spectroscopy of S=3/2 spins in isotropic-phase - a new probe for multiexponential relaxation. J Chem Phys 85:6282–6293CrossRefGoogle Scholar
  22. 22.
    Keltner JR, Wong ST, Roos MS (1994) Three-dimensional triple-quantum-filtered imaging of 0.012 and 0.024 M sodium-23 using short repetition times. J Magn Reson B 104:219–229CrossRefGoogle Scholar
  23. 23.
    Woessner DE (2001) NMR relaxation of spin-(3)/(2) nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concept Magn Res 13:294–325CrossRefGoogle Scholar
  24. 24.
    Babsky AM, Zhang H, Hekmatyar SK, Hutchins GD, Bansal N (2007) Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, (1)H diffusion-weighted MRI and PET imaging. Magn Reson Imaging 25:1015–1023CrossRefGoogle Scholar
  25. 25.
    Biller A, Badde S, Nagel A, Neumann JO, Wick W, Hertenstein A, Bendszus M, Sahm F, Benkhedah N, Kleesiek J (2016) Improved brain tumor classification by sodium MR imaging: prediction of IDH mutation status and tumor progression. AJNR Am J Neuroradiol 37:66–73CrossRefGoogle Scholar
  26. 26.
    Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefGoogle Scholar
  27. 27.
    Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212Google Scholar
  28. 28.
    Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A, Grünwald F, Krause BJ, Kuwert T, Sabri O, Tatsch K, Weber WA, Schreckenberger M (2011) German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 50:167–173CrossRefGoogle Scholar
  29. 29.
    Herzog H, Tellmann L, Hocke C, Pietrzyk U, Casey ME, Kuwert T (2004) NEMA NU2-2001 guided performance evaluation of four siemens ECAT PET scanners. IEEE Trans Nucl Sci 51:2662–2669CrossRefGoogle Scholar
  30. 30.
    Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zähringer M, Suchorska B, Wenter V, Illigens BM, Bartenstein P, Albert NL (2017) Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res 7:48CrossRefGoogle Scholar
  31. 31.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefGoogle Scholar
  32. 32.
    Fiege DP, Romanzetti S, Tse DH et al (2013) B0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme. J Magn Reson 228:32–36CrossRefGoogle Scholar
  33. 33.
    Worthoff WA, Shymanskaya A, Shah NJ (2018) Relaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI. Magn Reson Med Sci in pressGoogle Scholar
  34. 34.
    Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186CrossRefGoogle Scholar
  35. 35.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, de Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, de Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefGoogle Scholar
  36. 36.
    Jenkinson M, Beckmann CF, Behrens TE et al (2012) Fsl. Neuroimage 62:782–790CrossRefGoogle Scholar
  37. 37.
    Kaufman PL, Adler FH, Levin LA, Alm A (2011) Adler’s physiology of the eye. Elsevier Health SciGoogle Scholar
  38. 38.
    Coe JI (1969) Postmortem chemistries on human vitreous humor. Am J Clin Pathol 51:741–750CrossRefGoogle Scholar
  39. 39.
    Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with Na-23 MR imaging. Radiology 227:529–537CrossRefGoogle Scholar
  40. 40.
    Nunes Neto LP, Madelin G, Sood TP, Wu CC, Kondziolka D, Placantonakis D, Golfinos JG, Chi A, Jain R (2018) Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology 60:795–802CrossRefGoogle Scholar
  41. 41.
    Joshi AD, Parsons DW, Velculescu VE, Riggins GJ (2011) Sodium ion channel mutations in glioblastoma patients correlate with shorter survival. Mol Cancer 10:17CrossRefGoogle Scholar
  42. 42.
    Wang R, Gurguis CI, Gu W, Ko EA, Lim I, Bang H, Zhou T, Ko JH (2015) Ion channel gene expression predicts survival in glioma patients. Sci Rep 5:11593CrossRefGoogle Scholar
  43. 43.
    Cong D, Zhu W, Shi Y, Pointer KB, Clark PA, Shen H, Kuo JS, Hu S, Sun D (2014) Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H(+) extrusion, cell migration and survival. Carcinogenesis 35:2014–2024CrossRefGoogle Scholar
  44. 44.
    Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS, Sun D (2016) Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1. Carcinogenesis 37:839–851CrossRefGoogle Scholar
  45. 45.
    Cameron IL, Smith NK, Pool TB, Sparks RL (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 40:1493–1500Google Scholar
  46. 46.
    Romanzetti S, Mirkes CC, Fiege DP, Celik A, Felder J, Shah NJ (2014) Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4 Tesla. Neuroimage 96:44–53CrossRefGoogle Scholar
  47. 47.
    Shah NJ (2015) Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct 220:1867–1884CrossRefGoogle Scholar
  48. 48.
    Shah NJ, Oros-Peusquens AM, Arrubla J, Zhang K, Warbrick T, Mauler J, Vahedipour K, Romanzetti S, Felder J, Celik A, Rota-Kops E, Iida H, Langen KJ, Herzog H, Neuner I (2013) Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3 T and 9.4 T. J Magn Reson 229:101–115CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  • Aliaksandra Shymanskaya
    • 1
  • Wieland A. Worthoff
    • 1
    Email author
  • Gabriele Stoffels
    • 1
  • Johannes Lindemeyer
    • 1
  • Bernd Neumaier
    • 1
  • Philipp Lohmann
    • 1
  • Norbert Galldiks
    • 1
    • 2
    • 3
  • Karl-Josef Langen
    • 1
    • 4
    • 5
  • N. Jon Shah
    • 1
    • 5
    • 6
  1. 1.Institute of Neuroscience and Medicine (3, 4, 5, 11)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Department of NeurologyUniversity of CologneCologneGermany
  3. 3.Center of Integrated Oncology (CIO)Universities of Bonn and CologneCologneGermany
  4. 4.Department of Nuclear MedicineRWTH Aachen UniversityAachenGermany
  5. 5.Jülich-Aachen Research Alliance (JARA) – Section JARA-BrainAachenGermany
  6. 6.Department of NeurologyRWTH Aachen UniversityAachenGermany

Personalised recommendations