, 15:148 | Cite as

Clinical applications of breast cancer metabolomics using high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1H MRS): systematic scoping review

  • Almir G. V. Bitencourt
  • Johanna Goldberg
  • Katja Pinker
  • Sunitha B. ThakurEmail author
Review Article



Breast cancer is a heterogeneous disease with different prognoses and responses to systemic treatment depending on its molecular characteristics, which makes it imperative to develop new biomarkers for an individualized diagnosis and personalized oncological treatment. Ex vivo high-resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1H MRS) is the most common technique for metabolic quantification in human surgical and biopsy tissue specimens.


To perform a review of the current available literature on the clinical applications of HRMAS 1H MRS metabolic analysis in tissue samples of breast cancer patients.


This systematic scoping review included original research papers published in the English language in peer-reviewed journals. Study selection was performed independently by two reviewers and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed.


The literature search returned 159 studies and 26 papers were included as part of this systematic review. There was considerable variation regarding tissue type, aims, and statistical analysis methods across the different studies. To facilitate the interpretation of the results, the included studies were grouped according to their aims or main outcomes into: feasibility and tumor diagnosis (n = 6); tumor heterogeneity (n = 2); correlation with proteomics/transcriptomics (n = 3); correlation with prognostic factors (n = 11); and response evaluation to NAC (n = 4).


There is a lot of potential in including metabolic information of breast cancer tissue obtained with HRMAS 1H MRS. To date, studies show that metabolic concentrations quantified by this technique can be related to the diagnosis, prognosis, and treatment response in breast cancer patients.


Breast neoplasms Metabolomics Magnetic resonance spectroscopy 


Author contributions

JG conducted the literature review and constructed the article database. AGVB and SBT performed the study selection and reviewed the selected studies. All authors were involved in writing the manuscript. All authors read and approved the manuscript.


This work was partially supported by the NIH/NCI Cancer Center Support Grant (P30 CA008748) and the Breast Cancer Research Foundation

Compliance with ethical standards

Conflicts of interest

Katja Pinker received payment for activities not related to the present article including lectures including service on speakers bureaus and for travel/accommodations/meeting expenses unrelated to activities listed from the European Society of Breast Imaging (MRI educational course, annual scientific meeting) and the IDKD 2019 (educational course).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bathen, T. F., Geurts, B., Sitter, B., Fjøsne, H. E., Lundgren, S., Buydens, L. M., et al. (2013). Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS ONE, 8(4), e61578.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bathen, T. F., Jensen, L. R., Sitter, B., Fjösne, H. E., Halgunset, J., Axelson, D. E., et al. (2007). MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Research and Treatment, 104(2), 181–189.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bathen, T. F., Sitter, B., Sjobakk, T. E., Tessem, M.-B., & Gribbestad, I. S. (2010). Magnetic resonance metabolomics of intact tissue: A biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Research, 70(17), 6692–6696.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bitencourt, A. G. V., Pinker, K., & Thakur, S. (2019). Elevated glycine detected on in vivo magnetic resonance spectroscopy in a breast cancer patient: Case report and literature review. BJR Case Reports, 5, 20190090.CrossRefGoogle Scholar
  5. Borgan, E., Sitter, B., Lingjærde, O. C., Johnsen, H., Lundgren, S., Bathen, T. F., et al. (2010). Merging transcriptomics and metabolomics: Advances in breast cancer profiling. BMC Cancer, 10(1), 628.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bramer, W. M., Giustini, D., de Jonge, G. B., Holland, L., & Bekhuis, T. (2016). De-duplication of database search results for systematic reviews in EndNote. Journal of the Medical Library Association, 104(3), 240–243.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cao, M. D., Döpkens, M., Krishnamachary, B., Vesuna, F., Gadiya, M. M., Lønning, P. E., et al. (2012a). Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR in Biomedicine, 25(9), 1033–1042.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cao, M. D., Giskeødegård, G. F., Bathen, T. F., Sitter, B., Bofin, A., Lønning, P. E., et al. (2012b). Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer, 12(1), 39.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cao, M. D., Lamichhane, S., Lundgren, S., Bofin, A., Fjøsne, H., Giskeødegård, G. F., et al. (2014). Metabolic characterization of triple negative breast cancer. BMC Cancer, 14, 941.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cao, M. D., Sitter, B., Bathen, T. F., Bofin, A., Lønning, P. E., Lundgren, S., et al. (2012c). Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR in Biomedicine, 25(2), 369–378.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chae, E. Y., Shin, H. J., Kim, S., Baek, H.-M., Yoon, D., Kim, S., et al. (2016). The role of high-resolution magic angle spinning 1H nuclear magnetic resonance spectroscopy for predicting the invasive component in patients with ductal carcinoma in situ diagnosed on preoperative biopsy. PLoS ONE, 11(8), e0161038.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cheng, L. L., Chang, I.-W., Smith, B. L., & Gonzalez, R. G. (1998). Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. Journal of Magnetic Resonance, 135(1), 194–202.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Choi, J. S., Baek, H. M., Kim, S., Kim, M. J., Youk, J. H., Moon, H. J., et al. (2012). HR-MAS MR spectroscopy of breast cancer tissue obtained with core needle biopsy: Correlation with prognostic factors. PLoS ONE, 7(12), e51712.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi, J. S., Baek, H.-M., Kim, S., Kim, M. J., Youk, J. H., Moon, H. J., et al. (2013). Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy. PLoS ONE, 8(12), e83866.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Choi, J. S., Yoon, D., Koo, J. S., Kim, S., Park, V. Y., Kim, E.-K., et al. (2017). Magnetic resonance metabolic profiling of estrogen receptor-positive breast cancer: Correlation with currently used molecular markers. Oncotarget, 8(38), 63405–63416.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Emwas, A. H. M., Salek, R. M., Griffin, J. L., & Merzaban, J. (2013). NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics, 9(5), 1048–1072.CrossRefGoogle Scholar
  17. Euceda, L. R., Haukaas, T. H., Giskeødegård, G. F., Vettukattil, R., Engel, J., Silwal-Pandit, L., et al. (2017). Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy. Metabolomics, 13(4), 37.CrossRefGoogle Scholar
  18. Fardanesh, R., Marino, M. A., Avendano, D., Leithner, D., Pinker, K., & Thakur, S. B. (2019). Proton MR spectroscopy in the breast: Technical innovations and clinical applications. Journal of Magnetic Resonance Imaging. Scholar
  19. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., et al. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941–1953.PubMedCrossRefGoogle Scholar
  20. Fuss, T. L., & Cheng, L. L. (2016). Evaluation of cancer metabolomics using ex vivo high resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Metabolites, 6(1), E11.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ganji, S. K., Maher, E. A., & Choi, C. (2016). In vivo 1 HMRSI of glycine in brain tumors at 3T. Magnetic Resonance in Medicine, 75(1), 52–62.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Giskeødegård, G. F., Grinde, M. T., Sitter, B., Axelson, D. E., Lundgren, S., Fjøsne, H. E., et al. (2010). Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. Journal of Proteome Research, 9(2), 972–979.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Giskeødegård, G. F., Lundgren, S., Sitter, B., Fjøsne, H. E., Postma, G., Buydens, L. M. C., et al. (2012). Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR in Biomedicine, 25(11), 1271–1279.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Glunde, K., & Bhujwalla, Z. M. (2011). Metabolic tumor imaging using magnetic resonance spectroscopy. Seminars in Oncology, 38(1), 26–41.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gogiashvili, M., Horsch, S., Marchan, R., Gianmoena, K., Cadenas, C., Tanner, B., et al. (2018). Impact of intratumoral heterogeneity of breast cancer tissue on quantitative metabolomics using high-resolution magic angle spinning 1H NMR spectroscopy. NMR in Biomedicine, 31(2), e3862.CrossRefGoogle Scholar
  26. Gogiashvili, M., Nowacki, J., Hergenröder, R., Hengstler, J. G., Lambert, J., & Edlund, K. (2019). HR-MAS NMR based quantitative metabolomics in breast cancer. Metabolites, 9(2), 19.PubMedCentralCrossRefGoogle Scholar
  27. Günther, U. L. (2015). Metabolomics biomarkers for breast cancer. Pathobiology, 82(3–4), 153–165.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Haukaas, T., Euceda, L., Giskeødegård, G., & Bathen, T. (2017). Metabolic portraits of breast cancer by HR MAS MR spectroscopy of intact tissue samples. Metabolites, 7(2), 18.PubMedCentralCrossRefGoogle Scholar
  29. Haukaas, T. H., Euceda, L. R., Giskeødegård, G. F., Lamichhane, S., Krohn, M., Jernström, S., et al. (2016). Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes. Cancer & Metabolism, 4(1), 12.CrossRefGoogle Scholar
  30. Higgins, J. P. T., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. Version 5.1.0. London: The Cochrane Collaboration.Google Scholar
  31. Jagannathan, N. R., & Sharma, U. (2017). Breast tissue metabolism by magnetic resonance spectroscopy. Metabolites, 7(2), E25.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kaushik, A. K., & DeBerardinis, R. J. (2018). Applications of metabolomics to study cancer metabolism. Biochimica et Biophysica Acta: Reviews on Cancer, 1870(1), 2–14.PubMedPubMedCentralGoogle Scholar
  33. Li, T., & Deng, P. (2017). Nuclear Magnetic Resonance technique in tumor metabolism. Genes and Diseases, 4(1), 28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  34. McCartney, A., Vignoli, A., Biganzoli, L., Love, R., Tenori, L., Luchinat, C., et al. (2018). Metabolomics in breast cancer: A decade in review. Cancer Treatment Reviews, 67(April), 88–96.PubMedCrossRefPubMedCentralGoogle Scholar
  35. McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS peer review of electronic search strategies: 2015 guideline statement. Journal of Clinical Epidemiology, 75, 40–46.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Park, V. Y., Yoon, D., Koo, J. S., Kim, E.-K., Kim, S. Il, Choi, J. S., et al. (2016). Intratumoral agreement of high-resolution magic angle spinning magnetic resonance spectroscopic profiles in the metabolic characterization of breast cancer. Medicine, 95(15), e3398.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Paul, A., Kumar, S., Raj, A., Sonkar, A. A., Jain, S., Singhai, A., et al. (2018). Alteration in lipid composition differentiates breast cancer tissues: A 1H HRMAS NMR metabolomic study. Metabolomics, 14(9), 119.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Selli, C., & Sims, A. H. (2019). Neoadjuvant therapy for breast cancer as a model for translational research. Breast Cancer: Basic and Clinical Research, 13, 117822341982907.CrossRefGoogle Scholar
  40. Shin, H. J., Kim, S., Baek, H. M., Yoon, D., Kim, S., Cha, J. H., et al. (2016). Prediction of indolent breast cancer with favorable prognostic factors by metabolic profiling using in vivo and ex vivo MR metabolomics. Applied Magnetic Resonance, 47(2), 159–174.CrossRefGoogle Scholar
  41. Sitter, B., Bathen, T. F., Singstad, T. E., Fjøsne, H. E., Lundgren, S., Halgunset, J., et al. (2010). Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR in Biomedicine, 23(4), 424–431.PubMedPubMedCentralGoogle Scholar
  42. Sitter, B., Lundgren, S., Bathen, T. F., Halgunset, J., Fjosne, H. E., & Gribbestad, I. S. (2006). Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR in Biomedicine, 19(1), 30–40.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Sitter, B., Sonnewald, U., Spraul, M., Fjösne, H. E., & Gribbestad, I. S. (2002). High-resolution magic angle spinning MRS of breast cancer tissue. NMR in Biomedicine, 15(5), 327–337.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Tayyari, F., Gowda, G. A. N., Olopade, O. F., Berg, R., Yang, H. H., Lee, M. P., et al. (2018). Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences. Oncotarget, 9(14), 11677–11690.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Thakur, S. B., Horvat, J. V., Hancu, I., Sutton, O. M., Bernard-Davila, B., Weber, M., et al. (2019). Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: Value for breast cancer diagnosis and prognosis. Journal of Magnetic Resonance Imaging. Scholar
  46. Thomas, M. A., Lipnick, S., Velan, S. S., Liu, X., Banakar, S., Binesh, N., et al. (2009). Investigation of breast cancer using two-dimensional MRS. NMR in Biomedicine, 22(1), 77–91.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment. JAMA, 321(3), 288.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Yoon, H., Yoon, D., Yun, M., Choi, J. S., Park, V. Y., Kim, E. K., et al. (2016). Metabolomics of breast cancer using high-resolution magic angle spinning magnetic resonance spectroscopy: Correlations with 18F-FDG positron emission tomography-computed tomography, dynamic contrast-enhanced and diffusion-weighted imaging MRI. PLoS ONE, 11(7), e0159949.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Breast Imaging Service, Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of ImagingA.C.Camargo Cancer CenterSão PauloBrazil
  3. 3.MSK LibraryMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations