, 15:124 | Cite as

Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective

  • R. A. Carter
  • K. PanEmail author
  • E. W. Harville
  • S. McRitchie
  • S. Sumner
Review Article



Most known risk factors for preterm birth, a leading cause of infant morbidity and mortality, are not modifiable. Advanced molecular techniques are increasingly being applied to identify biomarkers and pathways important in disease development and progression.


We review the state of the literature and assess it from an epidemiologic perspective.


PubMed, Embase, CINAHL, and Cochrane Central were searched on January 31, 2019 for original articles published after 1998 that utilized an untargeted metabolomic approach to identify markers of preterm birth. Eligible manuscripts were peer-reviewed and included original data from untargeted metabolomics analyses of maternal tissue derived from human studies designed to determine mechanisms and predictors of preterm birth.


Of 2823 results, 14 articles met the inclusion requirements. There was little consistency in study design, outcome definition, type of biospecimen, or the inclusion of covariates and confounding factors, and few consistent associations with metabolites were identified in this review.


Studies to date on metabolomic predictors of preterm birth are highly heterogeneous in both methodology and resulting metabolite identification. There is an urgent need for larger studies in well-defined populations, to determine biomarkers predictive of preterm birth, and to reveal mechanisms and targets for development of intervention strategies.


Metabolomics Metabolite Preterm birth Biomarker 



We would like to thank Elaine Hicks, Tulane Science Library Resource Librarian for her help in forming the search terms for this review.

Author contributions

EM, SM, SS conceived of the concept of the review. KP and RAC conducted the literature search. KP, RAC, and EM analyzed the search results and wrote the paper. RAC, KP, EM, SM, and SS were involved in revision.


This work was funded by NICHD Grant R21HD087878 (Harville, PI), NIDDK Grant U24DK097193-01 (Sumner, PI), and NIEHS grant U19 ES019525-01 (Sumner, Co-I).

Compliance with ethical standard

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Supplementary material

11306_2019_1587_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Baraldi, E., Giordano, G., Stocchero, M., Moschino, L., Zaramella, P., Tran, M. R., et al. (2016). Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS ONE, 11, e0164211.CrossRefGoogle Scholar
  2. Bartel, J., Krumsiek, J., & Theis, F. J. (2013). Statistical methods for the analysis of high-throughput metabolomics data. Computational and Structural Biotechnology Journal, 4, e201301009.CrossRefGoogle Scholar
  3. Beger, R. D., Dunn, W. B., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C. B., et al. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15, 4.CrossRefGoogle Scholar
  4. Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., et al. (2016). Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics, 12, 149.CrossRefGoogle Scholar
  5. Begum, J., Samal, S. K., Ghose, S., & Niranjan, G. (2017). Vaginal fluid urea and creatinine in the diagnosis of premature rupture of membranes in resource limited community settings. Journal of Family and Reproductive Health, 11, 43–49.PubMedGoogle Scholar
  6. Brodsky, I. E., & Medzhitov, R. (2009). Targeting of immune signalling networks by bacterial pathogens. Nature Cell Biology, 11, 521–526.CrossRefGoogle Scholar
  7. Cecatti, J. G., Souza, R. T., Sulek, K., Costa, M. L., Kenny, L. C., McCowan, L. M., et al. (2016). Use of metabolomics for the identification and validation of clinical biomarkers for preterm birth: Preterm SAMBA. BMC Pregnancy Childbirth, 16, 212.CrossRefGoogle Scholar
  8. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Guillaume, Bourque, et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.CrossRefGoogle Scholar
  9. Dennis, K. K., Marder, E., Balshaw, D. M., Cui, Y., Lynes, M. A., Patti, G. J., et al. (2017). Biomonitoring in the era of the exposome. Environmental Health Perspectives, 125, 502–510.CrossRefGoogle Scholar
  10. Diaz, S. O., Barros, A. S., Goodfellow, B. J., Duarte, I. F., Galhano, E., Pita, C., et al. (2013). Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes. Journal of Proteome Research, 12, 2946–2957.CrossRefGoogle Scholar
  11. Diaz, S. O., Pinto, J., Graca, G., Duarte, I. F., Barros, A. S., Galhano, E., et al. (2011). Metabolic biomarkers of prenatal disorders: An exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. Journal of Proteome Research, 10, 3732–3742.CrossRefGoogle Scholar
  12. Fotiou, M., Fotakis, C., Tsakoumaki, F., Athanasiadou, E., Kyrkou, C., Dimitropoulou, A., et al. (2018). (1)H NMR-based metabolomics reveals the effect of maternal habitual dietary patterns on human amniotic fluid profile. Scientific Reports, 8, 4076.CrossRefGoogle Scholar
  13. Ghartey, J., Anglim, L., Romero, J., Brown, A., & Elovitz, M. A. (2017). Women with symptomatic preterm birth have a distinct cervicovaginal metabolome. American Journal Perinatology, 34, 1078–1083.CrossRefGoogle Scholar
  14. Ghartey, J., Bastek, J. A., Brown, A. G., Anglim, L., & Elovitz, M. A. (2015). Women with preterm birth have a distinct cervicovaginal metabolome. American Journal of Obstetrics and Gynecology, 212, 776.e1–776.e12.CrossRefGoogle Scholar
  15. Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S. O., Pinto, J., et al. (2010). Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: A nuclear magnetic resonance metabonomic study. Journal of Proteome Research, 9, 6016–6024.CrossRefGoogle Scholar
  16. Graca, G., Goodfellow, B. J., Barros, A. S., Diaz, S., Duarte, I. F., Spagou, K., et al. (2012). UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Molecular BioSystems, 8, 1243–1254.CrossRefGoogle Scholar
  17. Hallman, M., Saugstad, O. D., Porreco, R. P., Epstein, B. L., & Gluck, L. (1985). Role of myoinositol in regulation of surfactant phospholipids in the newborn. Early Human Development, 10, 245–254.CrossRefGoogle Scholar
  18. Halscott, T. L., Ramsey, P. S., & Reddy, U. M. (2014). First trimester screening cannot predict adverse outcomes yet. Prenatal Diagnosis, 34, 668–676.PubMedGoogle Scholar
  19. Hassan, S. S., Romero, R., Vidyadhari, D., Fusey, S., Baxter, J. K., Khandelwal, M., et al. (2011). Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: A multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound in Obstetrics and Gynecology, 38, 18–31.CrossRefGoogle Scholar
  20. Henderson, J., Carson, C., & Redshaw, M. (2016). Impact of preterm birth on maternal well-being and women’s perceptions of their baby: A population-based survey. British Medical Journal Open, 6, e012676.Google Scholar
  21. Howards, P. P., Schisterman, E. F., & Heagerty, P. J. (2007). Potential confounding by exposure history and prior outcomes: An example from perinatal epidemiology. Epidemiology, 18, 544–551.CrossRefGoogle Scholar
  22. Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17, 451–459.CrossRefGoogle Scholar
  23. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47, D590–D595.CrossRefGoogle Scholar
  24. Kariman, N., Afrakhte, M., Hedayati, M., Fallahian, M., & Alavi Majd, H. (2013). Diagnosis of premature rupture of membranes by assessment of urea and creatinine in vaginal washing fluid. Iranian Journal of Reproductive Medicine, 11, 93–100.PubMedPubMedCentralGoogle Scholar
  25. Khan, K. A., Petrou, S., Dritsaki, M., Johnson, S. J., Manktelow, B., Draper, E. S., et al. (2015). Economic costs associated with moderate and late preterm birth: A prospective population-based study. BJOG, 122, 1495–1505.CrossRefGoogle Scholar
  26. Leite, D. F. B., Morillon, A. C., Melo Junior, E. F., Souza, R. T., Khashan, A. S., Baker, P. N., et al. (2018). Metabolomics for predicting fetal growth restriction: Protocol for a systematic review and meta-analysis. British Medical Journal Open, 8, e022743.Google Scholar
  27. Li, J., Lu, Y. P., Reichetzeder, C., Kalk, P., Kleuser, B., Adamski, J., et al. (2016). Maternal PCaaC38:6 is Associated With Preterm Birth—A Risk Factor for Early and Late Adverse Outcome of the Offspring. Kidney and Blood Pressure Research, 41, 250–257.CrossRefGoogle Scholar
  28. Liebler, D. C. (2008). Protein damage by reactive electrophiles: Targets and consequences. Chemical Research in Toxicology, 21, 117–128.CrossRefGoogle Scholar
  29. Lizewska, B., Teul, J., Kuc, P., Lemancewicz, A., Charkiewicz, K., Goscik, J., et al. (2018). Maternal plasma metabolomic profiles in spontaneous preterm birth: Preliminary results. Mediators of Inflammation, 2018, 9362820.CrossRefGoogle Scholar
  30. Luan, H., Meng, N., Liu, P., Fu, J., Chen, X., Rao, W., et al. (2015). Non-targeted metabolomics and lipidomics LC-MS data from maternal plasma of 180 healthy pregnant women. Gigascience, 4, 16.CrossRefGoogle Scholar
  31. Lucaroni, F., Morciano, L., Rizzo, G., Buonuomo, E., Palombi, L., & Arduini, D. (2018). Biomarkers for predicting spontaneous preterm birth: An umbrella systematic review. Journal of Maternal-Fetal & Neonatal Medicine, 31, 726–734.CrossRefGoogle Scholar
  32. Maitre, L., Fthenou, E., Athersuch, T., Coen, M., Toledano, M. B., Holmes, E., et al. (2014). Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Medicine, 12, 110.CrossRefGoogle Scholar
  33. Matthews, T. J., & MacDorman, M. F. (2013). Infant mortality statistics from the 2010 period linked birth/infant death data set. National Vital Statistics Reports, 62, 1–26.PubMedGoogle Scholar
  34. Menon, R., Jones, J., Gunst, P. R., Kacerovsky, M., Fortunato, S. J., Saade, G. R., et al. (2014). Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reproductive Sciences, 21, 791–803.CrossRefGoogle Scholar
  35. Menon, S., & Manning, B. D. (2013). Cell signalling: Nutrient sensing lost in cancer. Nature, 498, 444–445.CrossRefGoogle Scholar
  36. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62, 1006–1012.CrossRefGoogle Scholar
  37. Mwaniki, M. K., Atieno, M., Lawn, J. E., & Newton, C. R. (2012). Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet, 379, 445–452.CrossRefGoogle Scholar
  38. NCBI. (2007). Societal costs of preterm birth in Behrman. In R. E. Behrman & A. S. Butler (Eds.), Preterm birth: Causes, consequences, and prevention (pp. 298–429). Washington, DC: National Academies Press (US).Google Scholar
  39. Orczyk-Pawilowicz, M., Jawien, E., Deja, S., Hirnle, L., Zabek, A., & Mlynarz, P. (2016). Metabolomics of human amniotic fluid and maternal plasma during normal pregnancy. PLoS ONE, 11, e0152740.CrossRefGoogle Scholar
  40. Poole, C. (1999). Controls who experienced hypothetical causal intermediates should not be excluded from case-control studies. American Journal of Epidemiology, 150(6), 547–551.CrossRefGoogle Scholar
  41. Rankings, A.S.H. (2018) Public health impact: Preterm birth. America’s Health RankingsGoogle Scholar
  42. Rappaport, S. M. (2012). Biomarkers intersect with the exposome. Biomarkers, 17, 483–489.CrossRefGoogle Scholar
  43. Rappaport, S. M. (2018). Redefining environmental exposure for disease etiology. NPJ Systems Biology and Applications, 4, 30.CrossRefGoogle Scholar
  44. Rappaport, S. M., Barupal, D. K., Wishart, D., Vineis, P., & Scalbert, A. (2014). The blood exposome and its role in discovering causes of disease. Environmental Health Perspectives, 122, 769–774.CrossRefGoogle Scholar
  45. Rappaport, S. M., & Smith, M. T. (2010). Environment and disease risks. Science, 330, 460–461.CrossRefGoogle Scholar
  46. Romero, R., Dey, S. K., & Fisher, S. J. (2014). Preterm labor: One syndrome, many causes. Science, 345, 760–765.CrossRefGoogle Scholar
  47. Romero, R., Mazaki-Tovi, S., Vaisbuch, E., Kusanovic, J. P., Chaiworapongsa, T., Gomez, R., et al. (2010). Metabolomics in premature labor: A novel approach to identify patients at risk for preterm delivery. Journal of Maternal-Fetal & Neonatal Medicine, 23, 1344–1359.CrossRefGoogle Scholar
  48. Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern Epidemiology, Third (Edition ed.). Philadelphia, PA: Wolters Kluwer.Google Scholar
  49. Sumner, S., Pathmasiri, W., Carlson, J. E., McRitchie, S. L., & Fennell, T. R. (2018). Metabolomics. In R. Smart (Ed.), Molecular and Biochemical Toxicology (pp. 181–199). Hoboken: Wiley.Google Scholar
  50. Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368, 1575–1584.CrossRefGoogle Scholar
  51. Thomas, M. M., Sulek, K., McKenzie, E. J., Jones, B., Han, T. L., Villas-Boas, S. G., et al. (2015). Metabolite profile of cervicovaginal fluids from early pregnancy is not predictive of spontaneous preterm birth. International Journal of Molecular Sciences, 16, 27741–27748.CrossRefGoogle Scholar
  52. Townsend, M. K., Bao, Y., Poole, E. M., Bertrand, K. A., Kraft, P., Wolpin, B. M., et al. (2016). Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiology, Biomarkers and Prevention, 25, 823–829.CrossRefGoogle Scholar
  53. Vineis, P., Chadeau-Hyam, M., Gmuender, H., Gulliver, J., Herceg, Z., Kleinjans, J., et al. (2017). The exposome in practice: Design of the EXPOsOMICS project. International Journal of Hygiene and Environmental Health, 220, 142–151.CrossRefGoogle Scholar
  54. Virgiliou, C., Gika, H. G., Witting, M., Bletsou, A. A., Athanasiadis, A., Zafrakas, M., et al. (2017). Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. Journal of Proteome Research, 16, 898–910.CrossRefGoogle Scholar
  55. von Elm, A. D. E., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & STROBE Initiative. (2008). The strengthening the reporting of observational studies in epidemiology (STROBE)statement: Guidelines for reporting observational studies. Journal of Clinical Epidemiology, 61, 344–349.CrossRefGoogle Scholar
  56. Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.CrossRefGoogle Scholar
  57. Wishart, D., Feunang, Y., Marcu, A., Guo, A., & Liang, K. (2018). HMDB 4.0—The human metabolome database for 2018. Nucleic Acids Research, 46(D1), 608–617.CrossRefGoogle Scholar
  58. Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., et al. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37, 153–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EpidemiologyTulane School of Public Health and Tropical MedicineNew OrleansUSA
  2. 2.Department of Nutrition, Nutrition Research InstituteUniversity of North Carolina at Chapel HillKannapolisUSA

Personalised recommendations