Advertisement

Metabolomics

, 15:90 | Cite as

A metabolomic signature of treated and drug-naïve patients with Parkinson’s disease: a pilot study

  • Jacopo TroisiEmail author
  • Annamaria Landolfi
  • Carmine Vitale
  • Katia Longo
  • Autilia Cozzolino
  • Massimo Squillante
  • Maria Cristina Savanelli
  • Paolo Barone
  • Marianna Amboni
Original Article

Abstract

Introduction

About 90% of cases of Parkinson’s disease (PD) are idiopathic and attempts to understand pathogenesis typically assume a multifactorial origin. Multifactorial diseases can be studied using metabolomics, since the cellular metabolome reflects the interplay between genes and environment.

Objective

The aim of our case–control study is to compare metabolomic profiles of whole blood obtained from treated PD patients, de-novo PD patients and controls, and to study the perturbations correlated with disease duration, disease stage and motor impairment.

Methods

We collected blood samples from 16 drug naïve parkinsonian patients, 84 treated parkinsonian patients, and 42 age matched healthy controls. Metabolomic profiles have been obtained using gas chromatography coupled to mass spectrometry. Multivariate statistical analysis has been performed using supervised models; partial least square discriminant analysis and partial least square regression.

Results

This approach allowed separation between discrete classes and stratification of treated patients according to continuous variables (disease duration, disease stage, motor score). Analysis of single metabolites and their related metabolic pathways revealed unexpected possible perturbations related to PD and underscored existing mechanisms that correlated with disease onset, stage, duration, motor score and pharmacological treatment.

Conclusion

Metabolomics can be useful in pathogenetic studies and biomarker discovery. The latter needs large-scale validation and comparison with other neurodegenerative conditions.

Keywords

Metabolome Parkinson’s disease Gas chromatography–mass spectrometry 

Notes

Acknowledgements

We are grateful to prof. Steven Symes who supported the linguistic revision of the paper. The study was supported by “Fondazione Grigioni per il Morbo di Parkinson”.

Author contributions

JT, AL, PB and MA conceived the study. JT and AL wrote the first draft of the manuscript. MA and PB reviewed and critiqued the drafts. JT conceived and performed statistical analysis. CV, KL, MS, AC, MCS and MA recruited the patients and performed the clinical evaluation. All the authors read, critiqued and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

All the authors have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the local ethics committee and a written consent form was signed by each participant.

Supplementary material

11306_2019_1554_MOESM1_ESM.docx (10.9 mb)
Supplementary material 1 (DOCX 11,136 kb)
11306_2019_1554_MOESM2_ESM.docx (191 kb)
Supplementary material 2 (DOCX 191 kb)

References

  1. Asselta, R., Rimoldi, V., Siri, C., Cilia, R., Guella, I., Tesei, S., et al. (2014). Glucocerebrosidase mutations in primary parkinsonism. Parkinsonism and Related Disorders, 20(11), 1215–1220.  https://doi.org/10.1016/j.parkreldis.2014.09.003.CrossRefPubMedGoogle Scholar
  2. Bertoncini, C. W., Fernandez, C. O., Griesinger, C., Jovin, T. M., & Zweckstetter, M. (2005). Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. Journal of Biological Chemistry, 280(35), 30649–30652.  https://doi.org/10.1074/jbc.C500288200.CrossRefPubMedGoogle Scholar
  3. Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567–574.  https://doi.org/10.1021/ac051495j.CrossRefPubMedGoogle Scholar
  4. Błaszczyk, J. W. (2016). Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. Frontiers in Neuroscience, 10, 269.  https://doi.org/10.3389/fnins.2016.00269.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bogdanov, M., Matson, W. R., Wang, L., Matson, T., Saunders-Pullman, R., Bressman, S. S., et al. (2008). Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain : A Journal of Neurology, 131(Pt 2), 389–396.  https://doi.org/10.1093/brain/awm304.CrossRefGoogle Scholar
  6. Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Epigenetics and Disorders of the Nervous System, 625, 56–63.  https://doi.org/10.1016/j.neulet.2016.02.009.CrossRefGoogle Scholar
  7. Chakraborty, J., Basso, V., & Ziviani, E. (2017). Post translational modification of Parkin. Biology Direct, 12, 6.  https://doi.org/10.1186/s13062-017-0176-3.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, X., Xie, C., Sun, L., Ding, J., & Cai, H. (2015). Longitudinal metabolomics profiling of Parkinson’s disease-related α-synuclein A53T Transgenic mice. PLoS ONE, 10(8), e0136612.  https://doi.org/10.1371/journal.pone.0136612.CrossRefPubMedPubMedCentralGoogle Scholar
  9. D’Alessandro, A., Giardina, B., Gevi, F., Timperio, A. M., & Zolla, L. (2012). Clinical metabolomics: The next stage of clinical biochemistry. Blood Transfusion, 10(Suppl 2), s19–s24.  https://doi.org/10.2450/2012.005S.CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525–535.  https://doi.org/10.1016/S1474-4422(06)70471-9.CrossRefPubMedGoogle Scholar
  11. DeLong, M. R., & Wichmann, T. (2015). Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurology, 72(11), 1354–1360.  https://doi.org/10.1001/jamaneurol.2015.2397.CrossRefPubMedGoogle Scholar
  12. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387–426.  https://doi.org/10.1039/b906712b.CrossRefPubMedGoogle Scholar
  13. Han, W., Sapkota, S., Camicioli, R., Dixon, R. A., & Li, L. (2017). Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Movement Disorders : Official Journal of the Movement Disorder Society, 32(12), 1720–1728.  https://doi.org/10.1002/mds.27173.CrossRefGoogle Scholar
  14. Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., & Hattori, N. (2016). Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. Journal of Neurology, Neurosurgery and Psychiatry, 87(3), 295.  https://doi.org/10.1136/jnnp-2014-309676.CrossRefPubMedGoogle Scholar
  15. Hu, Q., & Wang, G. (2016). Mitochondrial dysfunction in Parkinson’s disease. Translational Neurodegeneration, 5, 14.  https://doi.org/10.1186/s40035-016-0060-6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery and Psychiatry, 55(3), 181–184.CrossRefGoogle Scholar
  17. Johansen, K. K., Wang, L., Aasly, J. O., White, L. R., Matson, W. R., Henchcliffe, C., et al. (2009). Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS ONE, 4(10), e7551.  https://doi.org/10.1371/journal.pone.0007551.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet (London, England), 386(9996), 896–912.  https://doi.org/10.1016/S0140-6736(14)61393-3.CrossRefGoogle Scholar
  19. Karnovsky, A., Weymouth, T., Hull, T., Tarcea, V. G., Scardoni, G., Laudanna, C., et al. (2012). Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics (Oxford, England), 28(3), 373–380.  https://doi.org/10.1093/bioinformatics/btr661.CrossRefGoogle Scholar
  20. Katsuki, H., Nonaka, M., Shirakawa, H., Kume, T., & Akaike, A. (2004). Endogenous d-serine is involved in induction of neuronal death by. The Journal of Pharmacology and Experimental therapeutics, 311(2), 836–844.  https://doi.org/10.1124/jpet.104.070912.CrossRefPubMedGoogle Scholar
  21. Kempuraj, D., Thangavel, R., Natteru, P., Selvakumar, G., Saeed, D., Zahoor, H., et al. (2016). Neuroinflammation Induces Neurodegeneration. Journal of Neurology, Neurosurgery and Spine, 1(1), 1003.PubMedPubMedCentralGoogle Scholar
  22. Kidd, S. K., & Schneider, J. S. (2010). Protection of dopaminergic cells from MPP + -mediated toxicity by histone deacetylase inhibition. Brain Research, 1354, 172–178.  https://doi.org/10.1016/j.brainres.2010.07.041.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Klein, C., & Westenberger, A. (2012). Genetics of Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a008888.  https://doi.org/10.1101/cshperspect.a008888.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 1(5). https://www.jstatsoft.org/v028/i05
  25. Lan, A.-P., Chen, J., Zhao, Y., Chai, Z., & Hu, Y. (2017). mTOR signaling in Parkinson’s disease. NeuroMolecular Medicine, 19(1), 1–10.  https://doi.org/10.1007/s12017-016-8417-7.CrossRefPubMedGoogle Scholar
  26. LeWitt, P. A., Li, J., Lu, M., Guo, L., & Auinger, P. (2017). Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology, 88(9), 862–869.  https://doi.org/10.1212/WNL.0000000000003663.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1983–1992.  https://doi.org/10.1109/TVCG.2014.2346248.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lill, C. M. (2016). Genetics of Parkinson’s disease. Molecular and Cellular Probes, 30(6), 386–396.  https://doi.org/10.1016/j.mcp.2016.11.001.CrossRefPubMedGoogle Scholar
  29. Lim, C. K., Fernandez-Gomez, F. J., Braidy, N., Estrada, C., Costa, C., Costa, S., et al. (2017). Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Progress in Neurobiology, 155, 76–95.  https://doi.org/10.1016/j.pneurobio.2015.12.009.CrossRefPubMedGoogle Scholar
  30. Luan, H., Liu, L.-F., Tang, Z., Zhang, M., Chua, K.-K., Song, J.-X., et al. (2015). Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Scientific Reports, 5, 13888.  https://doi.org/10.1038/srep13888.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxidative Medicine and Cellular Longevity, 2016, 8590578.  https://doi.org/10.1155/2016/8590578.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mayer, E. A. (2011). Gut feelings: The emerging biology of gut-brain communication. Nature Reviews Neuroscience, 12(8), 453–466.  https://doi.org/10.1038/nrn3071.CrossRefPubMedGoogle Scholar
  33. Mazzulli, J. R., Xu, Y.-H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., et al. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37–52.  https://doi.org/10.1016/j.cell.2011.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Meiser, J., Delcambre, S., Wegner, A., Jager, C., Ghelfi, J., d’Herouel, A. F., et al. (2016). Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiology of Disease, 89, 112–125.  https://doi.org/10.1016/j.nbd.2016.01.019.CrossRefPubMedGoogle Scholar
  35. Mevik, B.-H., & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 1(2). https://www.jstatsoft.org/v018/i02
  36. Molina, J. A., Jimenez-Jimenez, F. J., Gomez, P., Vargas, C., Navarro, J. A., Orti-Pareja, M., et al. (1997). Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. Journal of the Neurological Sciences, 150(2), 123–127.CrossRefGoogle Scholar
  37. Nishida, K., Ono, K., Kanaya, S., & Takahashi, K. (2014). KEGGscape: A Cytoscape app for pathway data integration. F1000Research, 3, 144.  https://doi.org/10.12688/f1000research.4524.1.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Noyce, A. J., Bestwick, J. P., Silveira-Moriyama, L., Hawkes, C. H., Giovannoni, G., Lees, A. J., et al. (2012). Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Annals of Neurology, 72(6), 893–901.  https://doi.org/10.1002/ana.23687.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parashar, A., & Udayabanu, M. (2017). Gut microbiota: Implications in Parkinson’s disease. Parkinsonism and Related Disorders, 38, 1–7.  https://doi.org/10.1016/j.parkreldis.2017.02.002.CrossRefPubMedGoogle Scholar
  40. Roede, J. R., Uppal, K., Park, Y., Lee, K., Tran, V., Walker, D., et al. (2013). Serum metabolomics of slow vs. rapid motor progression Parkinson’s disease: A pilot study. PLoS ONE, 8(10), e77629.  https://doi.org/10.1371/journal.pone.0077629.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.e12.  https://doi.org/10.1016/j.cell.2016.11.018.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shafei, M. A., Harris, M., & Conway, M. E. (2017). Divergent metabolic regulation of autophagy and mTORC1—Early events in Alzheimer’s disease? Frontiers in Aging Neuroscience, 9, 173.  https://doi.org/10.3389/fnagi.2017.00173.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sharma, S., Taliyan, R., & Singh, S. (2015). Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behavioural Brain Research, 291, 306–314.  https://doi.org/10.1016/j.bbr.2015.05.052.CrossRefPubMedGoogle Scholar
  44. St Laurent, R., O’Brien, L. M., & Ahmad, S. T. (2013). Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience, 246, 382–390.  https://doi.org/10.1016/j.neuroscience.2013.04.037.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics : Official Journal of the Metabolomic Society, 3(3), 211–221.  https://doi.org/10.1007/s11306-007-0082-2.CrossRefGoogle Scholar
  46. Sysi-Aho, M., Katajamaa, M., Yetukuri, L., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93.  https://doi.org/10.1186/1471-2105-8-93.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Trezzi, J.-P., Galozzi, S., Jaeger, C., Barkovits, K., Brockmann, K., Maetzler, W., et al. (2017). Distinct metabolomic signature in cerebrospinal fluid in early Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 32(10), 1401–1408.  https://doi.org/10.1002/mds.27132.CrossRefGoogle Scholar
  48. Trezzi, J.-P., Hiller, K., & Mollenhauer, B. (2018). The importance of an independent validation cohort for metabolomics biomarker studies. Movement Disorders: Official Journal of the Movement Disorder Society, 33(5), 856.  https://doi.org/10.1002/mds.27374.CrossRefGoogle Scholar
  49. Widner, B., Leblhuber, F., & Fuchs, D. (2002). Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 109(2), 181–189.  https://doi.org/10.1007/s007020200014.CrossRefGoogle Scholar
  50. World Medical Association. (2013). World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194.  https://doi.org/10.1001/jama.2013.281053.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jacopo Troisi
    • 1
    • 2
    • 3
    Email author
  • Annamaria Landolfi
    • 1
  • Carmine Vitale
    • 4
  • Katia Longo
    • 5
  • Autilia Cozzolino
    • 6
  • Massimo Squillante
    • 6
  • Maria Cristina Savanelli
    • 7
  • Paolo Barone
    • 1
    • 6
  • Marianna Amboni
    • 5
    • 6
  1. 1.Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Neuroscience SectionUniversity of SalernoBaronissiItaly
  2. 2.Theoreo srlMontecorvino PuglianoItaly
  3. 3.European Biomedical Research Institute of Salerno (EBRIS)SalernoItaly
  4. 4.Department of Motor Science and WellnessUniversity ParthenopeNaplesItaly
  5. 5.Institute of Diagnosis and Care (IDC) Hermitage-CapodimonteNaplesItaly
  6. 6.Department of Medicine and Surgery, Center for Neurodegenerative Diseases (CEMAND), Neuroscience SectionUniversity of SalernoFiscianoItaly
  7. 7.Ios & ColemanNaplesItaly

Personalised recommendations