Advertisement

Metabolomics

, 15:91 | Cite as

Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata

  • Vanessa Ayumi Ueno
  • Alexandra Christine Helena Frankland SawayaEmail author
Original Article

Abstract

Introduction

Mikania laevigata Sch.Bip. ex Baker and Mikania glomerata Spreng. are medicinal plants popularly known as guaco, used for inflammatory diseases of the respiratory system, included in pharmaceutical formularies and often used without distinction. However, several studies show that the chemical composition varies between these species, as well as in plants are subjected to different environmental stresses. Few studies have been carried out with the volatile compounds of guaco, even less about the changes in volatile composition due to abiotic variation.

Objective

The aim of this work was to evaluate how volatile compounds vary according to the seasons and at different times of the day and if these compounds are influenced by the variations in the growth conditions such as: temperature, luminosity and water.

Methods

The headspace volatiles of the leaves were sampled by solid phase micro extraction and analyzed by gas chromatography–mass spectrometry. Untargeted metabolomic analysis of the resulting chromatograms and chemometrics was applied. The chemical profile of the volatiles of M. laevigata and M. glomerata were different; being clearly separated in the exploratory grouping analyzes (PCA), followed by analysis of variance of the marker compounds of both species.

Results

Only M. laevigata contained coumarin, considered to be the chemical marker of both species and to be responsible for the therapeutic activities. There was no significant difference between the morning and afternoon collections of either species. Coumarin, α-pinene and bicyclogermacrene were more intense in the volatiles of M. laevigata throughout the year and responsible for grouping the samples of this species. For M. glomerata, hexanal and 2-hexenal were responsible for grouping the samples and were more intense in all months. The growth conditions tested affected the intensity of specific compounds in the chromatograms. Some compounds were less intense with the increase of the temperature and in the plants subjected to full sunlight. However, certain volatile compounds—such as pinenes—were more intense in plants suffering drought.

Conclusion

The variation in composition between species of guaco was greater than those observed in the seasonal and cultivation studies, indicating that these species cannot be used indistinctly.

Keywords

Mikania laevigata Mikania glomerata Headspace volatiles SPME–GC–MS 

Notes

Acknowledgements

Thanks to Professor Eberlin, Laboratory ThoMSon for use of the GC–MS equipment; CPQBA, UNICAMP for the plants; and CNPq and CAPES for financial support.

Author contribution

VAU performed the plant experiment, data collection and analysis; AS planned and supervised the research. Both authors wrote the manuscript.

Compliance with Ethical Standard

Conflict of interest

The authors confirm that there are no conflicts of interest, no human or animal participants were involved in this study and all financial support has been declared.

Supplementary material

11306_2019_1546_MOESM1_ESM.docx (550 kb)
Supplementary material 1 (DOCX 551 kb)

References

  1. Adams, R. P. (2007) Identification of essential oil components by gas chromatography/mass spectrometry (pp. 469). Allured Publishing Corporation.Google Scholar
  2. Almeida, C. L., Xavier, R. M., Borghi, A. A., Santos, V. F., & Sawaya, A. C. H. F. (2017). Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. International Journal of Mass Spectrometry, 418, 162–172.  https://doi.org/10.1016/j.ijms.2016.09.016.CrossRefGoogle Scholar
  3. Bertolucci, S. K., Pereira, A. B., Pinto, J. E., de Aquino Ribeiro, J. A., de Oliveira, A. B., & Braga, F. C. (2009). Development and validation of an RP-HPLC method for quantification of cinnamic acid derivatives and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata. Planta Medicinal, 75(3), 280–285.  https://doi.org/10.1055/s-0028-1112195.CrossRefGoogle Scholar
  4. Bertolucci, S. K., Pereira, A. B., Pinto, J. E., de Oliveira, A. B., & Braga, F. C. (2013). Seasonal variation on the contents of coumarin and kaurane-type diterpenes in Mikania laevigata and M. glomerata leaves under different shade levels. Chemistry & Biodiversity, 10(2), 288–295.  https://doi.org/10.1002/cbdv.201200166.CrossRefGoogle Scholar
  5. Boeger, M. R. T., Alquini, Y., & Negrelle, R. R. B. (2004). Características anatômicas da região nodal de estacas em diferentes fases de desenvolvimento de guaco (Mikania glomerata Sprengel – Asteraceae) e formação de raízes adventícias. Revista Brasileira de Plantas Medicinais, 6(2), 1–6.Google Scholar
  6. Bolina, R. C., Garcia, E. D. F., & Duarte, M. G. R. (2009). Estudo comparativo da composição química das espécies vegetais Mikania glomerata Sprengel e Mikania laevigata Schultz Bip. ex Baker. Brazilian Journal of Pharmacognosy, 19(1), 294–298.CrossRefGoogle Scholar
  7. Brasil. (2011). Formulário de Fitoterápicos da Farmacopéia Brasileira 1ed. Brasilia: Agência Nacional de Vigilância Sanitária (ANVISA).Google Scholar
  8. Can’ Ani, A., Mühlemann, J. K., Ravid, J., Masci, T., Klempien, A., Nguyen, T. T., et al. (2015). Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions. Plant, Cell and Environment, 38(7), 1333–1346.  https://doi.org/10.1111/pce.12486.CrossRefGoogle Scholar
  9. Cappelaro, E. A., & Yariwake, J. H. (2015). HS-SPME-GC-MS analysis of volatile and semi-volatile compounds from dried leaves of Mikania glomerata Sprengel. Química Nova, 38(3), 427–430.Google Scholar
  10. Costa, V. C. O., Borghi, A. A., Mayer, J. L. S., & Sawaya, A. C. H. F. (2018). Comparison of the morphology, anatomy, and chemical profile of Mikania glomerata and Mikania laevigata. Planta Medicinal, 84(3), 191–200.  https://doi.org/10.1055/s-0043-119226.CrossRefGoogle Scholar
  11. De Melo, L. V., & Sawaya, A. C. H. F. (2015). UHPLC–MS quantification of coumarin and chlorogenic acid in extracts of the medicinal plants known as guaco (Mikania glomerata and Mikania laevigata). Revista Brasileira de Farmacognosia, 25(2), 105–110.  https://doi.org/10.1016/j.bjp.2015.02.005.CrossRefGoogle Scholar
  12. Dos Santos, S. C., Krueger, C. L., Steil, A. A., Kreuger, M. R., Biavatti, M. W., & Wisniewski Junior, A. (2006). LC characterisation of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonitis. Planta Medicinal, 72(8), 679–684.  https://doi.org/10.1055/s-2006-931577.CrossRefGoogle Scholar
  13. Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Plantas Aromáticas e Medicinais. Factores que afectam a produção. Potencialidades e Aplicações das Plantas Aromáticas e Medicinais. Thesis-University of Lisboa, pp. 1–18.Google Scholar
  14. Kainulainen, P., Oksanen, P., Palomäki, V., Holopainen, J. K., & Holopainenet, T. (1992). Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Canadian Journal of Botany, 70(8), 1613–1616.  https://doi.org/10.1139/b92-203.CrossRefGoogle Scholar
  15. Leite, M. G. R., Souza, C. L., Silva, M. A. M., Moreira, L. K. A., Matos, F. J. A., & Viana, G. S. B. (1993). Estudo farmacológico comparativo de Mikania glomerata Spreng. (guaco), Justicia pectoralis Jacq (anador) e Torresea cearensis (cumaru). Revista Brasileira de Farmácia, 74(1), 12–15.Google Scholar
  16. Lima, H. R. P., Kaplan, M. A. C., & Cruz, A. V. M. (2003). Influência dos fatores abióticos na produção e variabilidade de terpenóides em plantas. Floresta e Ambiente, 10(2), 71–77.Google Scholar
  17. Lopes, N. P., Kato, M. J., Andrade, E. H. A. A., Maia, J. G. S., & Yoshida, M. (1997). Circadian and seasonal variation in the essential oil from Virola surinamensis leaves. Phytochemistry, 46(4), 689–693.  https://doi.org/10.1016/S0031-9422(97)00324-5.CrossRefGoogle Scholar
  18. Lorenzi, H., & Matos, F. J. D. A. (2008). Plantas medicinais no Brasil: nativas e exóticas (2nd ed.). Nova Odessa: Instituto Plantarum.Google Scholar
  19. Meira, M. R., Martins, E. R., & Manganotti, S. A. (2012). Crescimento, produção de fitomassa e teor de óleo essencial de melissa (Melissa officinalis L.) sob diferentes níveis de sombreamento. Revista Brasileira de Plantas Medicinais, 14(2), 352–357.  https://doi.org/10.1590/s1516-05722012000200015.CrossRefGoogle Scholar
  20. Milborrow, B. V. (2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany, 52(359), 1145–1164.  https://doi.org/10.1093/jexbot/52.359.1145.CrossRefPubMedGoogle Scholar
  21. Morais, L. A. S. (2009). Influência dos fatores abióticos na composição química dos óleos essenciais. Horticultura Brasileira, 27(2), 4050–4063.Google Scholar
  22. Nogués, I., Muzzini, V., Loreto, F., & Bustamante, M. A. (2015). Drought and soil amendment effects on monoterpene emission in rosemary plants. Science of the Total Environment, 538, 768–778.  https://doi.org/10.1016/j.scitotenv.2015.08.080.CrossRefPubMedGoogle Scholar
  23. Passari, L. M. Z. G., Scarminio, I. S., & Bruns, R. E. (2014). Experimental designs characterizing seasonal variations and solvent effects on the quantities of coumarin and related metabolites from Mikania laevigata. Analytica Chimica Acta, 821, 89–96.  https://doi.org/10.1016/j.aca.2014.03.003.CrossRefPubMedGoogle Scholar
  24. Pavarini, D. P., Pavarini, S. P., Niehue, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1–4), 5–16.  https://doi.org/10.1016/j.anifeedsci.2012.07.002.CrossRefGoogle Scholar
  25. Pereira, A. M. S., Câmara, F. L. A., Celeghini, R. M. S., Vilegas, J. H. Y., Lanças, F. M., & França, S. C. (2000). Seasonal variation in coumarin content of Mikania glomerata. Journal of Herbs, Spices e Medicinal Plants, 7(2), 1–10.  https://doi.org/10.1300/J044v07n02_01.CrossRefGoogle Scholar
  26. Pinto-Zevallos, D. M., Martins, C. B. C., Pellegrino, A. C., & Zarbin, P. H. G. (2013). Compostos orgânicos voláteis na defesa induzida das plantas contra insetos herbívoros. Química Nova, 36(9), 1395–1405.  https://doi.org/10.1590/S0100-40422013000900021.CrossRefGoogle Scholar
  27. Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience, 2(1), 13.  https://doi.org/10.1186/2047-217X-2-13.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Silva, F., Satos, R. H. S., Diniz, E. R., Barbosa, L. C. A., Casali, V. W. D., & Lima, R. R. (2003). Teor e composição do óleo essencial de manjericão (Ocimum basilicum L.) em dois horários e duas épocas de colheita. Revista brasileira de plantas medicinais, 6(1), 33–38.Google Scholar
  29. SUPELCO-SIGMA, A. solid phase microextraction (SPME). Retrieved October 25, 2017 from http://www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spme.html.
  30. Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal (5th ed.). Porto Alegre: Artmed.Google Scholar
  31. Wallaart, E. T., Beekman, A. C., & Quax, W. J. (2000). Seasonal variation of artemisinin and its biosynthetic precursor in plants of Artemisia annua. Planta Médica, 66(1), 57–62.  https://doi.org/10.1055/s-2000-11115.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vanessa Ayumi Ueno
    • 1
  • Alexandra Christine Helena Frankland Sawaya
    • 2
    Email author
  1. 1.Institute of BiologyState University of CampinasCampinasBrazil
  2. 2.Faculty of Pharmaceutical ScienceState University of CampinasCampinasBrazil

Personalised recommendations