Advertisement

Metabolomics

, 15:59 | Cite as

Untargeted LC–MS metabolomic studies of Asteraceae species to discover inhibitors of Leishmania major dihydroorotate dehydrogenase

  • Lucas A. Chibli
  • Annylory L. Rosa
  • Maria Cristina Nonato
  • Fernando B. Da CostaEmail author
Original Article

Abstract

Introduction

Interesting data about the family Asteraceae as a new source of Leishmania major dihydroorotate dehydrogenase (LmDHODH) inhibitors are presented. This key macromolecular target for parasites causing neglected diseases catalyzes the fourth reaction of the de novo pyrimidine biosynthetic pathway, which takes part in major cell functions, including DNA and RNA biosynthesis.

Objectives

We aimed to (1) determine LmDHODH inhibitor candidates, revealing the type of chemistry underlying such bioactivity, and (2) predict the inhibitory potential of extracts from new untested plant species, classifying them as active or inactive based on their LC–MS based metabolic fingerprints.

Methods

Extracts from 150 species were screened for the inhibition of LmDHODH, and untargeted UHPLC-(ESI)-HRMS metabolomic studies were carried out in combination with in silico approaches.

Results

The IC50 values determined for a subset of 59 species ranged from 148 µg mL−1 to 9.4 mg mL−1. Dereplication of the metabolic fingerprints allowed the identification of 48 metabolites. A reliable OPLS-DA model (R2 > 0.9, Q2 > 0.7, RMSECV < 0.3) indicated the inhibitor candidates; nine of these metabolites were identified using data from isolated chemical standards, one of which—4,5-di-O-E-caffeoylquinic acid (IC50 73 µM)—was capable of inhibiting LmDHODH. The predictive OPLS model was also effective, with 60% correct predictions for the test set.

Conclusion

Our approach was validated for (1) the discovery of LmDHODH inhibitors or interesting starting points for the optimization of new leishmanicides from Asteraceae species and (2) the prediction of extracts from untested species, classifying them as active or inactive.

Keywords

Dihydroorotate dehydrogenase Leishmania major Neglected diseases Asteraceae Untargeted metabolomics UHPLC-(ESI)-HRMS 

Abbreviations

LmDHODH

Leishmania major dihydroorotate dehydrogenase

DHO

Dihydroorotate

STLs

Sesquiterpene lactones

UHPLC

Ultrahigh-performance liquid chromatography

HRMS

High-resolution mass spectrometry

ESI

Electrospray ionization

OPLS

Orthogonal projection to latent structures

PCA

Principal component analysis

NIM

Negative ionization mode

PIM

Positive ionization mode

CV

Cross-validation

RMSE

Root-mean-square error

DA

Discriminant analysis

DNP

Dictionary of natural products

Notes

Acknowledgments

The authors are grateful to the São Paulo Research Foundation (FAPESP), Brazil, the National Council for Scientific and Technological Development (CNPq), Brazil, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, for the funds and grants. We also thank Prof. José Rubens Pirani and Dr. Carolina Moriani Siniscalchi, both from the Institute of Biosciences, USP, São Paulo, Brazil, for providing us with several samples of plant material. This work is an activity within the Research Network Natural Products against Neglected Diseases (ResNet NPND; www.resnetnpnd.org).

Author contributions

LAC, FBC and MCN conceived and designed the study. LAC and ALR performed the experiments and analyzed the experimental data. LAC wrote the paper. MCN and FBC reviewed and edited the manuscript.

Funding

This study was supported by the São Paulo Research Foundation (FAPESP, Grant Nos. 2014/01443-6 and 2014/26866-7), Brazil, The National Council for Scientific and Technological Development (CNPq, Grant 304905/2015-1), Brazil, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001), Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2019_1520_MOESM1_ESM.docx (166.2 mb)
Supplementary material 1 (DOCX 170167 kb)

References

  1. Abdel-Sattar, E., Maes, L., & Salama, M. M. (2010). In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytotherapy Research, 24(9), 1322–1328.  https://doi.org/10.1002/ptr.3108.CrossRefPubMedGoogle Scholar
  2. Abrankó, L., & Clifford, M. N. (2017). An unambiguous nomenclature for the acyl-quinic acids commonly known as chlorogenic acids. Journal of Agricultural and Food Chemistry, 65(18), 3602–3608.  https://doi.org/10.1021/acs.jafc.7b00729.CrossRefPubMedGoogle Scholar
  3. Abubakar, A., Shamaki, B., & Ogbadoyi, E. (2008). The effect of Tridax procumbens treatment on Trypanosoma brucei brucei infections in mice. Planta Medica, 74(9), 1011–1012.CrossRefGoogle Scholar
  4. Alexander, D. L. J., Tropsha, A., & Winkler, D. A. (2015). Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. Journal of Chemical Information and Modeling, 55(7), 1316–1322.  https://doi.org/10.1021/acs.jcim.5b00206.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Althaus, J. B., Kaiser, M., Brun, R., & Schmidt, T. J. (2014). Antiprotozoal activity of Achillea ptarmica (Asteraceae) and its main alkamide constituents. Molecules, 19(5), 6428–6438.  https://doi.org/10.3390/molecules19056428.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amaral, J. G., Bauermeister, A., Pilon, A. C., Gouvea, D. R., Sakamoto, H. T., Gobbo-Neto, L., et al. (2017). Fragmentation pathway and structural characterization of new glycosylated phenolic derivatives from Eremanthus glomerulatus Less (Asteraceae) by electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 52(11), 783–787.  https://doi.org/10.1002/jms.3982.CrossRefPubMedGoogle Scholar
  7. Ambrósio, S. R., Oki, Y., Heleno, V. C. G., Chaves, J. S., Nascimento, P. G. B. D., Lichston, J. E., et al. (2008). Constituents of glandular trichomes of Tithonia diversifolia: Relationships to herbivory and antifeedant activity. Phytochemistry, 69(10), 2052–2060.  https://doi.org/10.1016/j.phytochem.2008.03.019.CrossRefPubMedGoogle Scholar
  8. Ambrosio, S. R., Schorr, K., & Da Costa, F. B. (2004). Terpenoids of Viguiera arenaria (Asteraceae). Biochemical Systematics and Ecology, 32(2), 221–224.  https://doi.org/10.1016/S0305-1978(03)00139-X.CrossRefGoogle Scholar
  9. Amin, A., Tuenter, E., Exarchou, V., Upadhyay, A., Cos, P., Maes, L., et al. (2016). Phytochemical and pharmacological investigations on nymphoides indica leaf extracts. Phytotherapy Research, 30(10), 1624–1633.  https://doi.org/10.1002/ptr.5663.CrossRefPubMedGoogle Scholar
  10. Andrade, M. A., dos Azevedo, C. S., Motta, F. N., dos Santos, M. L., Silva, C. L., de Santana, J. M., et al. (2016). Essential oils: In vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complementary and Alternative Medicine, 16(1), 444.  https://doi.org/10.1186/s12906-016-1401-9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Annoura, T., Nara, T., Makiuchi, T., Hashimoto, T., & Aoki, T. (2005). The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions. Journal of Molecular Evolution, 60(1), 113–127.  https://doi.org/10.1007/s00239-004-0078-8.CrossRefPubMedGoogle Scholar
  12. Arakaki, T. L., Buckner, F. S., Gillespie, J. R., Malmquist, N. A., Phillips, M. A., Kalyuzhniy, O., et al. (2008). Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Molecular Microbiology, 68(1), 37–50.  https://doi.org/10.1111/j.1365-2958.2008.06131.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Argyrou, A., Washabaugh, M. W., & Pickart, C. M. (2000). Dihydroorotate dehydrogenase from Clostridium oroticum is a class 1B enzyme and utilizes a concerted mechansim of catalysis. Biochemistry, 39(4), 10373–10384.  https://doi.org/10.1021/bi001111d.CrossRefPubMedGoogle Scholar
  14. Azizi, K., Shahidi-Hakak, F., Asgari, Q., Hatam, G. R., Fakoorziba, M. R., Miri, R., et al. (2016a). In vitro efficacy of ethanolic extract of Artemisia absinthium (Asteraceae) against Leishmania major L. using cell sensitivity and flow cytometry assays. Journal of Parasitic Diseases, 40(3), 735–740.  https://doi.org/10.1007/s12639-014-0569-5.CrossRefPubMedGoogle Scholar
  15. Azizi, K., Shahidi-hakak, F., & Moemenbellah-fard, M. D. (2016b). Antiulcer activity after oral administration of the wormwood ethanol extract on lesions due to Leishmania major parasites in BALB/C mice. Asian Journal of Pharmaceutical Research and Health Care, 8(2), 33–41.  https://doi.org/10.18311/ajprhc/2016/.CrossRefGoogle Scholar
  16. Bailen, M., Julio, L. F., Diaz, C. E., Sanz, J., Martínez-Díaz, R. A., Cabrera, R., et al. (2013). Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Industrial Crops and Products, 49, 102–107.  https://doi.org/10.1016/j.indcrop.2013.04.055.CrossRefGoogle Scholar
  17. Baldissera, M. D., Oliveira, C. B., Rech, V. C., Rezer, J. F. P., Sagrillo, M. R., Alves, M. P., et al. (2014a). Treatment with essential oil of Achyrocline satureioides in rats infected with Trypanosoma evansi: Relationship between protective effect and tissue damage. Pathology, Research and Practice, 210(12), 1068–1074.  https://doi.org/10.1016/j.prp.2014.06.008.CrossRefPubMedGoogle Scholar
  18. Baldissera, M. D., Oliveira, C. B., Zimmermann, C. E. P., Boligon, A. A., Athayde, M. L., Bolzan, L. P., et al. (2014b). In vitro trypanocidal activity of macela (Achyrocline satureioides) extracts against Trypanosoma evansi. Korean Journal of Parasitology, 52(3), 311–315.  https://doi.org/10.3347/kjp.2014.52.3.311.CrossRefPubMedGoogle Scholar
  19. Beisken, S., Eiden, M., & Salek, R. M. (2015). Getting the right answers: Understanding metabolomics challenges. Expert Review of Molecular Diagnostics, 15(1), 97–109.  https://doi.org/10.1586/14737159.2015.974562.CrossRefPubMedGoogle Scholar
  20. Bilia, A. R., Kaiser, M., Vincieri, F. F., & Tasdemir, D. (2008). Antitrypanosomal and antileishmanial activities of organic and aqueous extracts of Artemisia annua. Natural Product Communications, 3(12), 1963–1966.  https://doi.org/10.1055/s-0029-1234513.CrossRefGoogle Scholar
  21. Boufridi, A., & Quinn, R. J. (2016). Turning metabolomics into drug discovery. Journal of the Brazilian Chemical Society, 27(8), 1334–1338.  https://doi.org/10.5935/0103-5053.20160083.CrossRefGoogle Scholar
  22. Braga, F. G., Bouzada, M. L. M., de Fabri, R. L. M., Moreira, F. O., Scio, E., & Coimbra, E. S. (2007). Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. Journal of Ethnopharmacology, 111(2), 396–402.  https://doi.org/10.1016/j.jep.2006.12.006.CrossRefPubMedGoogle Scholar
  23. Budesinsky, M., Perez Souto, N., & Holub, M. (1994). Sesquiterpenic lactones of some species of genus Vernonia Schreb. Plant Biochemistry, 59(4), 913–928.  https://doi.org/10.1135/cccc19940913.CrossRefGoogle Scholar
  24. Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. Lancet (London, England), 392(10151), 951–970.  https://doi.org/10.1016/S0140-6736(18)31204-2.CrossRefGoogle Scholar
  25. Cáceres, A., López, B., González, S., Berger, I., Tada, I., & Maki, J. (1998). Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. Journal of Ethnopharmacology, 62(3), 195–202.  https://doi.org/10.1016/s0378-8741(98)00140-8.CrossRefPubMedGoogle Scholar
  26. Canlas, J., Hudson, J. B., Sharma, M., & Nandan, D. (2010). Echinacea and trypanasomatid parasite interactions: Growth-inhibitory and anti-inflammatory effects of Echinacea. Pharmaceutical Biology, 48(9), 1047–1052.  https://doi.org/10.3109/13880200903483468.CrossRefPubMedGoogle Scholar
  27. Castillo, S., Gopalacharyulu, P., Yetukuri, L., & Orešič, M. (2011). Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometrics and Intelligent Laboratory Systems, 108(1), 23–32.  https://doi.org/10.1016/j.chemolab.2011.03.010.CrossRefGoogle Scholar
  28. Cavalli, A., & Bolognesi, M. L. (2009). Neglected tropical diseases: Multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. Journal of Medicinal Chemistry, 52(23), 7339–7359.  https://doi.org/10.1021/jm9004835.CrossRefPubMedGoogle Scholar
  29. Ccana-Ccapatinta, G. V., Monge, M., Ferreira, P. L., & Da Costa, F. B. (2018). Chemistry and medicinal uses of the subfamily Barnadesioideae (Asteraceae). Phytochemistry Reviews, 17(3), 471–489.  https://doi.org/10.1007/s11101-017-9544-y.CrossRefGoogle Scholar
  30. Ccana-Ccapatinta, G. V., Sampaio, B. L., dos Santos, F. M., Batista, J. M., & Da Costa, F. B. (2017). Absolute configuration assignment of caffeic acid ester derivatives from Tithonia diversifolia by vibrational circular dichroism: The pitfalls of deuteration. Tetrahedron Asymmetry, 28(12), 1823–1828.  https://doi.org/10.1016/j.tetasy.2017.10.025.CrossRefGoogle Scholar
  31. Chagas-Paula, D. A., De Oliveira, R. B., Da Silva, V. C., Gobbo-Neto, L., Gasparoto, T. H., Campanelli, A. P., et al. (2011). Chlorogenic acids from Tithonia diversifolia demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones. Journal of Ethnopharmacology, 136(2), 355–362.  https://doi.org/10.1016/j.jep.2011.04.067.CrossRefPubMedGoogle Scholar
  32. Chagas-Paula, D. A., De Oliveira, T. B., Faleiro, D. P. V., de Oliveira, R. B., & Da Costa, F. B. (2014). Outstanding anti-inflammatory potential of Asteraceae species through the potent dual inhibition of cyclooxygenase and lipoxygenase. Planta Medica, 14, 1296–1307.  https://doi.org/10.1055/s-0035-1546206.CrossRefGoogle Scholar
  33. Chagas-Paula, D. A., Oliveira, T. B., Zhang, T., Edrada-Ebel, R., & Da Costa, F. B. (2015a). Prediction of anti-inflammatory plants and discovery of their biomarkers by machine learning algorithms and metabolomic studies. Planta Medica, 81(6), 450–458.  https://doi.org/10.1055/s-0034-1396206.CrossRefPubMedGoogle Scholar
  34. Chagas-Paula, D. A., Zhang, T., da Costa, F. B., & Edrada-Ebel, R. A. (2015b). A metabolomic approach to target compounds from the asteraceae family for dual COX and LOX inhibition. Metabolites, 5(3), 404–430.  https://doi.org/10.3390/metabo5030404.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cheleski, J., Rocha, J. R., Pinheiro, M. P., Wiggers, H. J., Da Silva, A. B. F., Nonato, M. C., et al. (2010). Novel insights for dihydroorotate dehydrogenase class 1A inhibitors discovery. European Journal of Medicinal Chemistry, 45(12), 5899–5909.  https://doi.org/10.1016/j.ejmech.2010.09.055.CrossRefPubMedGoogle Scholar
  36. Cheng, C., Macintyre, L., Abdelmohsen, U. R., Horn, H., Polymenakou, P. N., Edrada-Ebel, R., et al. (2015). Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE, 10(9), 1–21.  https://doi.org/10.1371/journal.pone.0138528.CrossRefGoogle Scholar
  37. Chibli, L. A., Schmidt, T. J., Nonato, M. C., Calil, F. A., & Da Costa, F. B. (2018). Natural products as inhibitors of Leishmania major dihydroorotate dehydrogenase. European Journal of Medicinal Chemistry, 157, 852–866.  https://doi.org/10.1016/j.ejmech.2018.08.033.CrossRefPubMedGoogle Scholar
  38. Clifford, M. N., Jaganath, I. B., Ludwig, I. A., & Crozier, A. (2017). Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 34(12), 1391–1421.  https://doi.org/10.1039/c7np00030h.CrossRefPubMedGoogle Scholar
  39. Clifford, M., Johnston, K., Knigh, S., & Kuhnert, N. (2003). A hierarchical scheme for LC-MSn identification of chlorogenic acid. Journal of Agricultural and Food Chemistry, 51(1), 2900–2911.CrossRefGoogle Scholar
  40. Clifford, M. N., Knight, S., & Kuhnert, N. (2005). Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. Journal of Agricultural and Food Chemistry, 53(10), 3821–3832.  https://doi.org/10.1021/jf050046h.CrossRefPubMedGoogle Scholar
  41. Cogo, J., Caleare, A. D. O., Ueda-Nakamura, T., Filho, B. P. D., Ferreira, I. C. P., & Nakamura, C. V. (2012). Trypanocidal activity of guaianolide obtained from Tanacetum parthenium (L) Schultz-Bip and its combinational effect with benznidazole. Phytomedicine, 20(1), 59–66.  https://doi.org/10.1016/j.phymed.2012.09.011.CrossRefPubMedGoogle Scholar
  42. Consonni, V., Ballabio, D., & Todeschini, R. (2009). Comments on the definition of the Q2Parameter for QSAR validation. Journal of Chemical Information and Modeling, 49(7), 1669–1678.CrossRefGoogle Scholar
  43. Copeland, R. A., Marcinkeviciene, J., Haque, T. S., Kopcho, L. M., Jiang, W., Wang, K., et al. (2000). Helicobacter pylori-selective antibacterials based on inhibition of pyrimidine biosynthesis. The Journal of biological chemistry, 275(43), 33373–33378.  https://doi.org/10.1074/jbc.M004451200.CrossRefPubMedGoogle Scholar
  44. Cordeiro, A. T., Feliciano, P. R., & Nonato, M. C. (2006). Crystallization and preliminary X-ray diffraction analysis of Leishmania major dihydroorotate dehydrogenase. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 62(10), 1049–1051.  https://doi.org/10.1107/S1744309106038966.CrossRefGoogle Scholar
  45. Cortés-Rojas, D. F., Chagas-Paula, D. A., Da Costa, F. B., Souza, C. R. F., & Oliveira, W. P. (2013). Bioactive compounds in Bidens pilosa L. populations: A key step in the standardization of phytopharmaceutical preparations. Brazilian Journal of Pharmacognosy, 23(1), 28–35.  https://doi.org/10.1590/s0102-695x2012005000100.CrossRefGoogle Scholar
  46. Cos, P., Vlietinck, A. J., Berghe, D. Vanden, & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. Journal of Ethnopharmacology, 106(3), 290–302.  https://doi.org/10.1016/j.jep.2006.04.003.CrossRefPubMedGoogle Scholar
  47. Cruz-Vega, D., Verde-Star, M. J., Salinas-Gonzalez, N. R., Rosales-Hernandez, B., Estrada-Garcia, I., Mendez-Aragon, P., et al. (2009). Review of pharmacological effects of Glycyrrhiza radix and its bioactive compounds. China Journal of Chinese Materia Medica, 22, 557–559.  https://doi.org/10.1002/ptr.CrossRefGoogle Scholar
  48. Da Costa, F. B., Albuquerque, S., & Vichnewski, W. (1996). Diterpenes and synthetic derivatives from Viguiera aspillioides with trypanomicidal activity. Planta Medica, 62(6), 557–559.  https://doi.org/10.1055/s-2006-957971.CrossRefPubMedGoogle Scholar
  49. de Arias, A. R., Ferro, E., Inchausti, A., Ascurra, M., Acosta, N., Rodriguez, E., et al. (1995). Mutagenicity, insecticidal and trypanocidal activity of some Paraguayan Asteraceae. Journal of Ethnopharmacology, 45(1), 35–41.  https://doi.org/10.1016/0378-8741(94)01193-4.CrossRefGoogle Scholar
  50. Da Costa, F. B., Terfloth, L., & Gasteiger, J. (2005). Sesquiterpene lactone-based classification of three Asteraceae tribes: A study based on self-organizing neural networks applied to chemosystematics. Phytochemistry, 66(3), 345–353.  https://doi.org/10.1016/j.phytochem.2004.12.006.CrossRefPubMedGoogle Scholar
  51. Da Cunha Pinto, A., Vessecchi, R., Da Silva, C. G., Amorim, A. C. L., Dos Santos Júnior, H. M., Rezende, M. J. C., et al. (2016). Electrospray ionization tandem mass spectrometry analysis of isopimarane diterpenes from Velloziaceae. Rapid Communications in Mass Spectrometry, 30(1), 61–68.  https://doi.org/10.1002/rcm.7411.CrossRefPubMedGoogle Scholar
  52. Da Silva, B. P., Cortez, D. A., Violin, T. Y., Filho, B. P. D., Nakamura, C. V., Ueda-Nakamura, T., et al. (2010). Antileishmanial activity of a guaianolide from Tanacetum parthenium (L.) Schultz Bip. Parasitology International, 59(4), 643–646.  https://doi.org/10.1016/j.parint.2010.08.005.CrossRefPubMedGoogle Scholar
  53. De Souza, M. C., Rosa, A. L., Poschenrieder, C., Tolrà, R., & Da Costa, F. B. (2018). Fingerprinting metabolomics in tropical mistletoes: A case study with facultative aluminum-accumulating species. Phytochemistry Letters, 25(March), 90–94.  https://doi.org/10.1016/j.phytol.2018.04.013.CrossRefGoogle Scholar
  54. De Toledo, J. S., Ambrósio, S. R., Borges, C. H. G., Manfrim, V., Cerri, D. G., Cruz, A. K., et al. (2014). In Vitro leishmanicidal activities of sesquiterpene lactones from Tithonia diversifolia against Leishmania braziliensis promastigotes and amastigotes. Molecules, 19(5), 6070–6079.  https://doi.org/10.3390/molecules19056070.CrossRefPubMedPubMedCentralGoogle Scholar
  55. De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.  https://doi.org/10.1038/nprot.2007.95.CrossRefPubMedGoogle Scholar
  56. Demarque, D. P., Crotti, A. E. M., Vessecchi, R., Lopes, J. L. C., & Lopes, N. P. (2016). Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Natural Products Reports, 33(3), 432–455.  https://doi.org/10.1039/C5NP00073D.CrossRefGoogle Scholar
  57. Do Carmo, G. M., Baldissera, M. D., Vaucher, R. A., Rech, V. C., Oliveira, C. B., Sagrillo, M. R., et al. (2015). Effect of the treatment with Achyrocline satureioides (free and nanocapsules essential oil) and diminazene aceturate on hematological and biochemical parameters in rats infected by Trypanosoma evansi. Experimental Parasitology, 149, 39–46.  https://doi.org/10.1016/j.exppara.2014.12.005.CrossRefPubMedGoogle Scholar
  58. Do Nascimento, A. M., Soares, M. G., da Silva Torchelsen, F. K. V., de Araujo, J. A. V., Lage, P. S., Duarte, M. C., et al. (2015). Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World Journal of Microbiology & Biotechnology, 31(11), 1793–1800.  https://doi.org/10.1007/s11274-015-1932-0.CrossRefGoogle Scholar
  59. Don, R., & Ioset, J. R. (2014). Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology, 141(1), 140–146.  https://doi.org/10.1017/S003118201300142X.CrossRefPubMedGoogle Scholar
  60. Ernst, M., Silva, D. B., Silva, R. R., Vêncio, R. Z. N., & Lopes, N. P. (2014). Mass spectrometry in plant metabolomics strategies: From analytical platforms to data acquisition and processing. Natural Product Reports, 31(6), 784–806.  https://doi.org/10.1039/c3np70086k.CrossRefPubMedGoogle Scholar
  61. Fang, N., Yu, S., & Prior, R. L. (2002). LC/MS/MS characterization of phenolic constituents in dried plums. Journal of Agricultural and Food Chemistry, 50(12), 3579–3585.  https://doi.org/10.1021/jf0201327.CrossRefPubMedGoogle Scholar
  62. Feliciano, P. R., Cordeiro, A. T., Costa-Filho, A. J., & Nonato, M. C. (2006). Cloning, expression, purification, and characterization of Leishmania major dihydroorotate dehydrogenase. Protein Expression and Purification, 48(1), 98–103.  https://doi.org/10.1016/j.pep.2006.02.010.CrossRefPubMedGoogle Scholar
  63. Fiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., et al. (2007a). The metabolomics standards initiative (MSI). Metabolomics, 3(3), 175–178.  https://doi.org/10.1007/s11306-007-0070-6.CrossRefGoogle Scholar
  64. Fiehn, O., Sumner, L. W., Rhee, S. Y., Ward, J., Dickerson, J., Lange, B. M., et al. (2007b). Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 3(3), 195–201.  https://doi.org/10.1007/s11306-007-0068-0.CrossRefGoogle Scholar
  65. Forcisi, S., Moritz, F., Kanawati, B., Tziotis, D., Lehmann, R., & Schmitt-Kopplin, P. (2013). Liquid chromatography-mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. Journal of Chromatography A, 1292, 51–65.  https://doi.org/10.1016/j.chroma.2013.04.017.CrossRefPubMedGoogle Scholar
  66. Foti, A., Musumarra, G., Trovato-salinaro, A., Scire, S., Barresi, V., Fortuna, C. G., et al. (2007). Identification of genes involved in radiation-induced G 1 arrest y. Journal of Chemometrics, 20(September), 398–405.  https://doi.org/10.1002/cem.CrossRefGoogle Scholar
  67. Frank, F. M., Ulloa, J., Cazorla, S. I., Maravilla, G., Malchiodi, E. L., Grau, A., et al. (2013). Trypanocidal activity of smallanthus sonchifolius: Identification of active sesquiterpene lactones by bioassay-guided fractionation. Evidence-based Complementary and Alternative Medicine, 2013, 1–8.  https://doi.org/10.1155/2013/627898.CrossRefGoogle Scholar
  68. Fuchino, H., Koide, T., Takahashi, M., Sekita, S., & Satake, M. (2001). New sesquiterpene lactones from Elephantopus mollis and their leishmanicidal activities. Planta Medica, 67(7), 647–653.  https://doi.org/10.1055/s-2001-17349.CrossRefPubMedGoogle Scholar
  69. Gamboa-Leon, R., Vera-Ku, M., Peraza-Sanchez, S. R., Ku-Chulim, C., Horta-Baas, A., & Rosado-Vallado, M. (2014). Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice. Parasite, 21, 15.  https://doi.org/10.1051/parasite/2014016.CrossRefPubMedPubMedCentralGoogle Scholar
  70. García, M., Monzote, L., Montalvo, A. M., & Scull, R. (2010). Screening of medicinal plants against Leishmania amazonensis. Pharmaceutical Biology, 48(9), 1053–1058.  https://doi.org/10.3109/13880200903485729.CrossRefPubMedGoogle Scholar
  71. Getti, G., Durgadoss, P., Domínguez-Carmona, D., Martín-Quintal, Z., Peraza-Sánchez, S., Peña-Rodríguez, L. M., et al. (2009). Leishmanicidal activity of yucatecan medicinal plants on Leishmania species responsible for cutaneous Leishmaniasis. Journal of Parasitology, 95(2), 456–460.  https://doi.org/10.1645/GE-1675.1.CrossRefPubMedGoogle Scholar
  72. Gobbo-Neto, L., Bauermeister, A., Sakamoto, H. T., Gouvea, D. R., Lopes, J. L. C., & Lopes, N. P. (2017). Spatial and temporal variations in secondary metabolites content of the Brazilian arnica leaves (Lychnophora ericoidesMart., Asteraceae). Journal of the Brazilian Chemical Society, 28(12), 2382–2390.  https://doi.org/10.21577/0103-5053.20170092.CrossRefGoogle Scholar
  73. Goodacre, R., Broadhurst, D., Smilde, A. K., Kristal, B. S., Baker, J. D., Beger, R., et al. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 3(3), 231–241.  https://doi.org/10.1007/s11306-007-0081-3.CrossRefGoogle Scholar
  74. Gorrochategui, E., Jaumot, J., Lacorte, S., & Tauler, R. (2016). Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC - Trends in Analytical Chemistry, 82, 425–442.  https://doi.org/10.1016/j.trac.2016.07.004.CrossRefGoogle Scholar
  75. Grael, C. F. F., Albuquerque, S., & Lopes, J. L. C. (2005). Chemical constituents of Lychnophora pohlii and trypanocidal activity of crude plant extracts and of isolated compounds. Fitoterapia, 76(1), 73–82.  https://doi.org/10.1016/j.fitote.2004.10.013.CrossRefPubMedGoogle Scholar
  76. Gubbiveeranna, V., & Nagaraju, S. (2016). Ethnomedicinal, phytochemical constituents and pharmacological activities of Tridax procumbens: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 1–7.CrossRefGoogle Scholar
  77. Gustafson, G., Davis, G., Waldron, C., Smith, A., & Henry, M. (1996). Identification of a new antifungal target site through a dual biochemical and molecular-genetics approach. Current Genetics, 30(2), 159–165.  https://doi.org/10.1007/s002940050115.CrossRefPubMedGoogle Scholar
  78. Gutiérrez-Rebolledo, G. A., Drier-Jonas, S., & Jiménez-Arellanes, M. A. (2017). Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pacific Journal of Tropical Medicine, 10(12), 1105–1110.  https://doi.org/10.1016/j.apjtm.2017.10.016.CrossRefPubMedGoogle Scholar
  79. Hagerman, A. E., & Butler, L. G. (1978). Protein precipitation method for the quantitative determination of Tannins. Journal of Agricultural and Food Chemistry, 26(4), 809–812.  https://doi.org/10.1021/jf60218a027.CrossRefGoogle Scholar
  80. Haque, T. S., Tadesse, S., Marcinkeviciene, J., Rogers, M. J., Sizemore, C., Kopcho, L. M., et al. (2002). Parallel synthesis of potent, pyrazole-based inhibitors of Helicobacter pylori dihydroorotate dehydrogenase. Journal of Medicinal Chemistry, 45(21), 4669–4678.  https://doi.org/10.1021/jm020112w.CrossRefPubMedGoogle Scholar
  81. Harel, D., Khalid, S. A., Kaiser, M., Brun, R., Wünsch, B., & Schmidt, T. J. (2011). Encecalol angelate, an unstable chromene from Ageratum conyzoides L: Total synthesis and investigation of its antiprotozoal activity. Journal of Ethnopharmacology, 137(1), 620–625.  https://doi.org/10.1016/j.jep.2011.06.015.CrossRefPubMedGoogle Scholar
  82. Heinrich, M., Robles, M., West, J. E., Ortiz de Montellano, B. R., & Rodriguez, E. (1998). Ethnopharmacology of Mexican Asteraceae (Compositae). Annual Review of Pharmacology and Toxicology, 38(1), 539–565.  https://doi.org/10.1146/annurev.pharmtox.38.1.539.CrossRefPubMedGoogle Scholar
  83. Henrich, C. J., & Beutler, J. A. (2013). Matching the power of high throughput screening to the chemical diversity of natural products. Natural Product Reports, 30(10), 1284–1298.  https://doi.org/10.1039/c3np70052f.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hensel, A., Maas, M., Sendker, J., Lechtenberg, M., Petereit, F., Deters, A., et al. (2011). Eupatorium perfoliatum L.: Phytochemistry, traditional use and current applications. Journal of Ethnopharmacology, 138(3), 641–651.  https://doi.org/10.1016/j.jep.2011.10.002.CrossRefPubMedGoogle Scholar
  85. Hoelz, L. V., Calil, F. A., Nonato, M. C., Pinheiro, L. C., & Boechat, N. (2018). Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria. Future Medicinal Chemistry, 10(15), 1853–1874.  https://doi.org/10.4155/fmc-2017-0250.CrossRefPubMedGoogle Scholar
  86. Igual, M. O., Martucci, M. E. P., Da Costa, F. B., & Gobbo-Neto, L. (2013). Sesquiterpene lactones, chlorogenic acids and flavonoids from leaves of Vernonia polyanthes Less (Asteraceae). Biochemical Systematics and Ecology, 51, 94–97.  https://doi.org/10.1016/j.bse.2013.08.018.CrossRefGoogle Scholar
  87. Islamuddin, M., Chouhan, G., Farooque, A., Dwarakanath, B. S., Sahal, D., & Afrin, F. (2015). Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Neglected Tropical Diseases, 9(1), e3321.  https://doi.org/10.1371/journal.pntd.0003321.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Islamuddin, M., Chouhan, G., Want, M. Y., Tyagi, M., Abdin, M. Z., Sahal, D., et al. (2014). Leishmanicidal activities of Artemisia annua leaf essential oil against visceral leishmaniasis. Frontiers in Microbiology, 5, 1–15.  https://doi.org/10.3389/fmicb.2014.00626.CrossRefGoogle Scholar
  89. Islamuddin, M., Farooque, A., Dwarakanath, B. S., Sahal, D., & Afrin, F. (2012). Extracts of Artemisia annua leaves and seeds mediate programmed cell death in Leishmania donovani. Journal of Medical Microbiology, 61(PART12), 1709–1718.  https://doi.org/10.1099/jmm.0.049387-0.CrossRefPubMedGoogle Scholar
  90. Izumi, E., Morello, L. G., Ueda-Nakamura, T., Yamada-Ogatta, S. F., Filho, B. P. D., Cortez, D. A. G., et al. (2008). Trypanosoma cruzi: Antiprotozoal activity of parthenolide obtained from Tanacetum parthenium (L.) Schultz Bip. (Asteraceae, Compositae) against epimastigote and amastigote forms. Experimental Parasitology, 118(3), 324–330.  https://doi.org/10.1016/j.exppara.2007.08.015.CrossRefPubMedGoogle Scholar
  91. Jones, M. E. (1980). Pyrimidine nucleotide biosynthesis in animals: Genes, enzymes, and regulation of UMP biosynthesis. Annual Review of Biochemistry, 49(1), 253–279.  https://doi.org/10.1146/annurev.bi.49.070180.001345.CrossRefPubMedGoogle Scholar
  92. Jordão, C. O., Vichnewski, W., Petto De Souza, G. E., Albuquerque, S., & Callegari Lopes, J. L. (2004). Trypanocidal activity of chemical constituents from Lychnophora salicifolia Mart. Phytotherapy Research, 18(4), 332–334.  https://doi.org/10.1002/ptr.1366.CrossRefPubMedGoogle Scholar
  93. Kahler, A. E., Nielsen, F. S., & Switzer, R. L. (1999). Biochemical characterization of the heteromeric Bacillus subtilis dihydroorotate dehydrogenase and its isolated subunits. Archives of Biochemistry and Biophysics, 371(2), 191–201.  https://doi.org/10.1006/abbi.1999.1455.CrossRefPubMedGoogle Scholar
  94. Kapil, S., Singh, P. K., & Silakari, O. (2018). An update on small molecule strategies targeting leishmaniasis. European Journal of Medicinal Chemistry, 157, 339–367.  https://doi.org/10.1016/J.EJMECH.2018.08.012.CrossRefPubMedGoogle Scholar
  95. Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636.  https://doi.org/10.1093/bioinformatics/btk039.CrossRefPubMedGoogle Scholar
  96. Katajamaa, M., & Orešič, M. (2007). Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A, 1158(1–2), 318–328.  https://doi.org/10.1016/j.chroma.2007.04.021.CrossRefPubMedGoogle Scholar
  97. Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536.  https://doi.org/10.1093/bioinformatics/btn323.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kifleyohannes, T., Terefe, G., Tolossa, Y. H., Giday, M., & Kebede, N. (2014). Effect of crude extracts of Moringa stenopetala and Artemisia absinthium on parasitaemia of mice infected with Trypanosoma congolense. BMC Research Notes, 7(1), 390.  https://doi.org/10.1186/1756-0500-7-390.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kim, H. K., & Verpoorte, R. (2010). Sample preparation for plant metabolomics. Phytochemical Analysis, 21(1), 4–13.  https://doi.org/10.1002/pca.1188.CrossRefPubMedGoogle Scholar
  100. Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.  https://doi.org/10.1186/1471-2105-8-105.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Klein-Júnior, L. C., Viaene, J., Salton, J., Koetz, M., Gasper, A. L., Henriques, A. T., et al. (2016). The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: Extraction and fractionation optimization based on metabolic profiling. Journal of Chromatography A, 1463, 60–70.  https://doi.org/10.1016/j.chroma.2016.07.030.CrossRefPubMedGoogle Scholar
  102. Krastanov, A. (2010). Metabolomics—The state of art. Biotechnology and Biotechnological Equipment, 24(1), 1537–1543.  https://doi.org/10.2478/V10133-010-0001-y.CrossRefGoogle Scholar
  103. Lagnika, L., Weniger, B., Attioua, B., Jensen, O., Anthaume, C., Sanni, A., et al. (2012). Trypanocidal activity of diarylheptanoids from Schrankia leptocarpa DC. South African Journal of Botany, 83, 92–97.  https://doi.org/10.1016/j.sajb.2012.06.011.CrossRefGoogle Scholar
  104. Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A. V., et al. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Natural Product Reports, 31(11), 1585–1611.  https://doi.org/10.1039/c4np00068d.CrossRefPubMedGoogle Scholar
  105. Lander, F., Hufnagel, M., & Berner, R. (2010). Antimikrobielle therapie der sepsis in der pädiatrie. Padiatrische Praxis, 75(2), 233–245.Google Scholar
  106. Laurella, L. C., Frank, F. M., Sarquiz, A., Alonso, M. R., Giberti, G., Cavallaro, L., et al. (2012). In vitro evaluation of antiprotozoal and antiviral activities of extracts from Argentinean Mikania species. The Scientific World Journal, 2012, 1–6.  https://doi.org/10.1100/2012/121253.CrossRefGoogle Scholar
  107. Li, L., Zhao, C., Chang, Y., Lu, X., Zhang, J., Zhao, Y., et al. (2014). Metabolomics study of cured tobacco using liquid chromatography with mass spectrometry: Method development and its application in investigating the chemical differences of tobacco from three growing regions. Journal of Separation Science, 37(9–10), 1067–1074.  https://doi.org/10.1002/jssc.201301138.CrossRefPubMedGoogle Scholar
  108. Lima, T. C., Souza, R. D. J., De Moraes, M. H., Steindel, M., & Biavatti, M. W. (2017). A new furanoheliangolide sesquiterpene lactone from Calea pinnatifida (R. Br.) Less. (Asteraceae) and evaluation of its trypanocidal and leishmanicidal activities. Journal of the Brazilian Chemical Society, 28(2), 367–375.  https://doi.org/10.5935/0103-5053.20160186.CrossRefGoogle Scholar
  109. Loo, C. S. N., Lam, N. S. K., Yu, D., Zhuan, S. X., & Lu, F. (2017). Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacological Research, 117, 192–217.  https://doi.org/10.1016/j.phrs.2016.11.012.CrossRefPubMedGoogle Scholar
  110. Luque de Castro, M. D., & Delgado-Povedano, M. M. (2014). Ultrasound: A subexploited tool for sample preparation in metabolomics. Analytica Chimica Acta, 806, 74–84.  https://doi.org/10.1016/j.aca.2013.10.053.CrossRefPubMedGoogle Scholar
  111. Maldonado, E. M., Salamanca, E., Giménez, A., & Sterner, O. (2016). Antileishmanial metabolites from Lantana balansae. Brazilian Journal of Pharmacognosy, 26(2), 180–183.  https://doi.org/10.1016/j.bjp.2015.11.007.CrossRefGoogle Scholar
  112. Malebo, H. M., Tanja, W., Cal, M., Swaleh, S. A. M., Omolo, M. O., & Hassanali, A. (2009). Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzania Journal of Health Research, 11(4), 226–234.PubMedGoogle Scholar
  113. Marcinkeviciene, J., Rogers, M. J., Kopcho, L., Jiang, W., Wang, K., Murphy, D. J., et al. (2000). Selective inhibition of bacterial dihydroorotate dehydrogenases by thiadiazolidinediones. Biochemical Pharmacology, 60(3), 339–342.  https://doi.org/10.1016/S0006-2952(00)00348-8.CrossRefPubMedGoogle Scholar
  114. Marcinkeviciene, J., Tinney, L. M., Wang, K. H., Rogers, M. J., & Copeland, R. A. (1999). Dihydroorotate dehydrogenase B of Enterococcus faecalis Characterization and insights into chemical mechanism. Biochemistry, 38(40), 13129–13137.  https://doi.org/10.1021/bi990674q.CrossRefPubMedGoogle Scholar
  115. Marín, C., Boutaleb-Charki, S., Díaz, J. G., Huertas, O., Rosales, M. J., Pérez-Cordon, G., et al. (2009). Antileishmaniasis activity of flavonoids from Consolida oliveriana. Journal of Natural Products, 72(6), 1069–1074.  https://doi.org/10.1021/np8008122.CrossRefPubMedGoogle Scholar
  116. Martens, H., & Martens, M. (2000). Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference, 11(1–2), 5–16.  https://doi.org/10.1016/S0950-3293(99)00039-7.CrossRefGoogle Scholar
  117. Martínez-Díaz, R. A., Ibáñez-Escribano, A., Burillo, J., de Heras, L., del Prado, G., Agulló-Ortuño, M. T., et al. (2015). Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Memorias do Instituto Oswaldo Cruz, 110(5), 693–699.  https://doi.org/10.1590/0074-02760140129.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Martín-Quintal, Z., Moo-Puc, R., González-Salazar, F., Chan-Bacab, M. J., Torres-Tapia, L. W., & Peraza-Sánchez, S. R. (2009). In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana. Journal of Ethnopharmacology, 122(3), 463–467.  https://doi.org/10.1016/j.jep.2009.01.037.CrossRefPubMedGoogle Scholar
  119. Milić, P. S., Rajković, K. M., Bekrić, D. M., Stamenković, O. S., & Veljković, V. B. (2014). The kinetic and thermodynamic analysis of ultrasound-extraction of minerals from aerial parts of white lady’s bedstraw (Galium mollugo L.). Chemical Engineering Research and Design, 92(7), 1399–1409.  https://doi.org/10.1016/j.cherd.2013.10.024.CrossRefGoogle Scholar
  120. Mishina, Y. V., Krishna, S., Haynes, R. K., & Meade, J. C. (2007). Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrobial Agents and Chemotherapy, 51(5), 1852–1854.  https://doi.org/10.1128/AAC.01544-06.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Molyneux, D. H. (2014). Neglected tropical diseases: Now more than just’other diseases’—the post-2015 agenda. International Health, 6(3), 172–180.  https://doi.org/10.1093/inthealth/ihu037.CrossRefPubMedGoogle Scholar
  122. Montesino, N. L., Kaiser, M., Brun, R., & Schmidt, T. J. (2015). Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules, 20(8), 14118–14138.  https://doi.org/10.3390/molecules200814118.CrossRefGoogle Scholar
  123. Montrieux, E., Perera, W. H., García, M., Maes, L., Cos, P., & Monzote, L. (2014). In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitology Research, 113(8), 2925–2932.  https://doi.org/10.1007/s00436-014-3954-1.CrossRefPubMedGoogle Scholar
  124. Monzote, L., Perera Córdova, W. H., García, M., Piñón, A., & Setzer, W. N. (2016). In-vitro and in vivo activities of phenolic compounds against cutaneous leishmaniasis. Records of Natural Products, 10(3), 269–276.Google Scholar
  125. Monzote, L., Piñón, A., Sculli, R., & Setzer, W. (2014). Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Natural Product Communications, 9(12), 1799–1804.CrossRefGoogle Scholar
  126. Moran, M., Guzman, J., Ropars, A. L., McDonald, A., Jameson, N., Omune, B., et al. (2009). Neglected disease research and development: How much are we really spending? PLoS Medicine, 6(2), 0137–0146.  https://doi.org/10.1371/journal.pmed.1000030.CrossRefGoogle Scholar
  127. Moreira, R. R. D., Martins, G. Z., Varandas, R., Cogo, J., Perego, C. H., Roncoli, G., et al. (2017). Composition and leishmanicidal activity of the essential oil of Vernonia polyanthes Less (Asteraceae). Natural Product Research, 31(24), 2905–2908.  https://doi.org/10.1080/14786419.2017.1299723.CrossRefPubMedGoogle Scholar
  128. Muelas-Serrano, S., Nogal, J. J., Martínez-Díaz, R. A., Escario, J. A., Martínez-Fernández, A. R., & Gómez-Barrio, A. (2000). In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. Journal of Ethnopharmacology, 71(1–2), 101–107.  https://doi.org/10.1016/S0378-8741(99)00185-3.CrossRefPubMedGoogle Scholar
  129. Munier-Lehmann, H., Vidalain, P. O., Tangy, F., & Janin, Y. L. (2013). On dihydroorotate dehydrogenases and their inhibitors and uses. Journal of Medicinal Chemistry, 56(8), 3148–3167.  https://doi.org/10.1021/jm301848w.CrossRefPubMedGoogle Scholar
  130. Mushtaq, M. Y., Choi, Y. H., Verpoorte, R., & Wilson, E. G. (2014). Extraction for metabolomics: Access to the metabolome. Phytochemical Analysis, 25(4), 291–306.  https://doi.org/10.1002/pca.2505.CrossRefPubMedGoogle Scholar
  131. Naz, S., Vallejo, M., García, A., & Barbas, C. (2014). Method validation strategies involved in non-targeted metabolomics. Journal of Chromatography A, 1353, 99–105.  https://doi.org/10.1016/j.chroma.2014.04.071.CrossRefPubMedGoogle Scholar
  132. Nibret, E., & Wink, M. (2010). Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities. Phytomedicine, 17(5), 369–374.  https://doi.org/10.1016/j.phymed.2009.07.016.CrossRefPubMedGoogle Scholar
  133. Nicolete, R., Arakawa, N. S., Rius, C., Nomizo, A., Jose, P. J., Da Costa, F. B., et al. (2009). Budlein A from Viguiera robusta inhibits leukocyte-endothelial cell interactions, adhesion molecule expression and inflammatory mediators release. Phytomedicine, 16(10), 904–915.  https://doi.org/10.1016/j.phymed.2009.04.002.CrossRefPubMedGoogle Scholar
  134. Nielsen, F. S., Andersen, P. S., & Jensen, K. F. (1996). The B form of dihydroorotate dehydrogenase from Lactococcus lactis consists of two different subunits, encoded by the pyrDb and pyrK genes, and contains FMN, FAD, and [FeS] redox centers. Journal of Biological Chemistry, 271(46), 29359–29365.  https://doi.org/10.1074/jbc.271.46.29359.CrossRefPubMedGoogle Scholar
  135. Nilforoushzadeh, M. A., Shirani-bidabadi, L., Zolfaghari-baghbaderani, A., & Saberi, S. (2008). (Yarrow) and propolis hydroalcoholic extracts versus systemic glucantime in the treatment of cutaneous leishmaniasis in balb/c mice. Journal of Vector Borne Diseases, 45(December), 1–6.Google Scholar
  136. Nogueira, M. S., Da Costa, F. B., Brun, R., Kaiser, M., & Schmidt, T. J. (2016). ent-pimarane and ent-kaurane diterpenes from Aldama discolor (Asteraceae) and their antiprotozoal activity. Molecules, 21(9), 1–14.  https://doi.org/10.3390/molecules21091237.CrossRefGoogle Scholar
  137. Nonato, M. C., & Costa-Filho, A. (2012). The dihydroorotate dehydrogenases. In R. Hille, S. Miller, & B. Palfey (Eds.), Handbook of flavoproteins: Oxidases, dehydrogenases and related systems (Vol. 1, pp. 297–308). Berlin: De Gruyter.Google Scholar
  138. Nonato, M. C., De Pádua, R. A. P., David, J. S., Reis, R. A. G., Tomaleri, G. P., D’Muniz, H. P., et al. (2019). Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie, 158, 180–190.  https://doi.org/10.1016/J.BIOCHI.2019.01.006.CrossRefPubMedGoogle Scholar
  139. Nour, A. M. M., Khalid, S. A., Kaiser, M., Brun, R., Abdalla, W. E., & Schmidt, T. J. (2010). The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. Journal of Ethnopharmacology, 129(1), 127–130.  https://doi.org/10.1016/j.jep.2010.02.015.CrossRefPubMedGoogle Scholar
  140. Nour, A. M. M., Khalid, S. A., Kaiser, M., Brun, R., Abdallah, W. E., & Schmidt, T. J. (2009). The antiprotozoal activity of sixteen asteraceae species native to sudan and bioactivity-guided isolation of xanthanolides from Xanthium brasilicum. Planta Medica, 75(12), 1363–1368.  https://doi.org/10.1055/s-0029-1185676.CrossRefPubMedGoogle Scholar
  141. Ogungbe, I. V., & Setzer, W. N. (2013). In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules, 18(7), 7761–7847.  https://doi.org/10.3390/molecules18077761.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Ogungbe, I. V., & Setzer, W. N. (2016a). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part III: In-silico molecular docking investigations. Molecules, 21(10), 2176–2228.  https://doi.org/10.3390/molecules21101389.CrossRefGoogle Scholar
  143. Ogungbe, I. V., & Setzer, W. N. (2016b). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part III: In-silico molecular docking investigations. Molecules, 21(10), 2128–2175.  https://doi.org/10.3390/molecules21101389.CrossRefGoogle Scholar
  144. Oliveira, T. B., Gobbo-Neto, L., Schmidt, T. J., & Da Costa, F. B. (2015). Study of chromatographic retention of natural terpenoids by chemoinformatic tools. Journal of Chemical Information and Modeling, 55(1), 26–38.  https://doi.org/10.1021/ci500581q.CrossRefPubMedGoogle Scholar
  145. Padilla-Gonzalez, G. F., Diazgranados, M., Ccana-Ccapatinta, G., Casoti, R., & Da Costa, F. B. (2017). Caffeic acid derivatives and further compounds from Espeletia barclayana Cuatrec. (Asteraceae, Espeletiinae). Biochemical Systematics and Ecology, 70, 291–293.  https://doi.org/10.1016/j.bse.2016.12.016.CrossRefGoogle Scholar
  146. Padilla-González, G. F., Diazgranados, M., & Da Costa, F. B. (2017). Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Scientific Reports, 7(1), 1–11.  https://doi.org/10.1038/s41598-017-09431-7.CrossRefGoogle Scholar
  147. Padilla-Gonzalez, G. F., dos Santos, F. A., & Da Costa, F. B. (2016). Sesquiterpene lactones: More than protective plant compounds with high toxicity. Critical Reviews in Plant Sciences, 35(1), 18–37.  https://doi.org/10.1080/07352689.2016.1145956.CrossRefGoogle Scholar
  148. Pádua, R. A. P., Tomaleri, G. P., Reis, R. A. G., David, J. S., Silva, V. C., Pinheiro, M. P., et al. (2014). ThermoFMN—a thermofluor assay developed for ligand-screening as an alternative strategy for drug discovery. Journal of the Brazilian Chemical Society, 25(10), 1864–1871.  https://doi.org/10.5935/0103-5053.20140157.CrossRefGoogle Scholar
  149. Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discovery Today, 21(2), 204–207.  https://doi.org/10.1016/j.drudis.2015.01.009.CrossRefPubMedGoogle Scholar
  150. Peraza-Sánchez, S. R., Cen-Pacheco, F., Noh-Chimal, A., May-Pat, F., Simá-Polanco, P., Dumonteil, E., et al. (2007). Leishmanicidal evaluation of extracts from native plants of the Yucatan peninsula. Fitoterapia, 78(4), 315–318.  https://doi.org/10.1016/j.fitote.2007.03.013.CrossRefPubMedGoogle Scholar
  151. Pinheiro, M. P., Emery, F. D. S., & Nonato, M. C. (2013). Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase. Current Pharmaceutical Design, 19(14), 2615–2627.  https://doi.org/10.2174/1381612811319140011.CrossRefPubMedGoogle Scholar
  152. Pinheiro, M. P., Iulek, J., & Cristina Nonato, M. (2008). Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase from Y strain. Biochemical and Biophysical Research Communications, 369(3), 812–817.  https://doi.org/10.1016/j.bbrc.2008.02.074.CrossRefPubMedGoogle Scholar
  153. Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.  https://doi.org/10.1186/1471-2105-11-395.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Porto, T. S., Rangel, R., Furtado, N. A. J. C., De Carvalho, T. C., Martins, C. H. G., Veneziani, R. C. S., et al. (2009). Pimarane-type diterpenes: Antimicrobial activity against oral pathogens. Molecules, 14(1), 191–199.  https://doi.org/10.3390/molecules14010191.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Prigent, S. V. E., Gruppen, H., Visser, A. J. W. G., Van Koningsveld, G. A., De Jong, G. A. H., & Voragen, A. G. J. (2003). Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins. Journal of Agricultural and Food Chemistry, 51(17), 5088–5095.  https://doi.org/10.1021/jf021229w.CrossRefPubMedGoogle Scholar
  156. Rabito, M. F., Britta, E. A., Pelegrini, B. L., Scariot, D. B., Almeida, M. B., Nixdorf, S. L., et al. (2014). In vitro and in vivo antileishmania activity of sesquiterpene lactone-rich dichloromethane fraction obtained from Tanacetum parthenium (L) Schultz-Bip. Experimental Parasitology, 143(1), 18–23.  https://doi.org/10.1016/j.exppara.2014.04.014.CrossRefPubMedGoogle Scholar
  157. Reaction, K., Meyers, B., & Francis, X. (2017). SciFinder ®. Planta Medica, 47(51), 9985–9988.  https://doi.org/10.3969/j.issn.1007-3426.2012.03.024.CrossRefGoogle Scholar
  158. Reis, R. A. G., Calil, F. A., Feliciano, P. R., Pinheiro, M. P., & Nonato, M. C. (2017). The dihydroorotate dehydrogenases: Past and present. Archives of Biochemistry and Biophysics, 632, 175–191.  https://doi.org/10.1016/j.abb.2017.06.019.CrossRefPubMedGoogle Scholar
  159. Ríos, Y., Otero, A., Lopera, D., Echeverry, M., Robledo, S., & Yepes, M. (2008). Actividad citotóxica y leishmanicida in vitro del aceite esencial de manzanilla (Matricaria chamomilla). Revista Colombiana de Ciencias Químicas y Farmacéuticas, 37(2), 200–211.Google Scholar
  160. Rocca-Serra, P., Salek, R. M., Arita, M., Correa, E., Dayalan, S., Gonzalez-Beltran, A., et al. (2016). Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 12(1), 1–13.  https://doi.org/10.1007/s11306-015-0879-3.CrossRefGoogle Scholar
  161. Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 1–11.  https://doi.org/10.1038/srep29265.CrossRefGoogle Scholar
  162. Santoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Mendonça, L. Z., & Soares, M. J. (2007). Trypanosoma cruzi: Activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Experimental Parasitology, 116(3), 283–290.  https://doi.org/10.1016/j.exppara.2007.01.018.CrossRefPubMedGoogle Scholar
  163. Santos, A. O., Santin, A. C., Yamaguchi, M. U., Cortez, L. E. R., Ueda-Nakamura, T., Dias-Filho, B. P., et al. (2010). Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Annals of Tropical Medicine and Parasitology, 104(6), 475–483.  https://doi.org/10.1179/136485910X12786389891281.CrossRefPubMedGoogle Scholar
  164. Sariego, I., Monzote, L., Scull, R., & Diaz, A. (2008). Activity of essential oils from cuban plants against Leishmania donovani and Trichomonas vaginalis. International Journal of Essential Oil Therapeutics, 2(4), 172–174.Google Scholar
  165. Sarkari, B., Sattari, H., Moein, M., Tamadon, A., Rad, R., & Asgari, Q. (2016). Effect of topical gel prepared with hydroalcoholic extract of Echinacea purpurea on treatment of Leishmania major-induced cutaneous leishmaniasis in BALB/C mice. Journal of Pharmaceutical Negative Results, 7(1), 12.  https://doi.org/10.4103/0976-9234.177054.CrossRefGoogle Scholar
  166. Sartori, L. R., Vessecchi, R., Humpf, H. U., Da Costa, F. B., & Lopes, N. P. (2014). A systematic investigation of the fragmentation pattern of two furanoheliangolide C-8 stereoisomers using electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 28(7), 723–730.  https://doi.org/10.1002/rcm.6839.CrossRefPubMedGoogle Scholar
  167. Schinor, E. C., Salvador, M. J., Pral, E. M. F., Alfieri, S. C., Albuquerque, S., & Dias, D. A. (2007). Effect of extracts and isolated compounds from Chresta scapigera on viability of Leishmania amazonensis and Trypanosoma cruzi. Revista Brasileira de Ciências Farmacêuticas, 43(2), 295–300.  https://doi.org/10.1590/s1516-93322007000200016.CrossRefGoogle Scholar
  168. Schinor, E. C., Salvador, M. J., Tomaz, J. C., Furusho, E. M., Alfieri, S. C., Albuquerque, S. De, et al. (2006). Biological activities and chemical composition of crude extracts from Chresta exsucca. Brazilian Journal of Pharmaceutical Sciences, 42(1), 83–89.  https://doi.org/10.1590/S1516-93322006000100009.CrossRefGoogle Scholar
  169. Schmidt, T. J. (2006). Structure-activity relationships of sesquiterpene lactones. Studies in Natural Products Chemistry, 33, 309–392.  https://doi.org/10.1016/s1572-5995(06)80030-x.CrossRefGoogle Scholar
  170. Schmidt, T. J., Brun, R., Willuhn, G., & Khalid, S. A. (2002). Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Medica, 68(8), 750–751.  https://doi.org/10.1055/s-2002-33799.CrossRefPubMedGoogle Scholar
  171. Schmidt, T. J., Da Costa, F. B., Lopes, N. P., Kaiser, M., & Brun, R. (2014). Silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrobial Agents and Chemotherapy, 58(1), 325–332.  https://doi.org/10.1128/AAC.01263-13.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Scotti, M. T., Herrera-Acevedo, C., Oliveira, T. B., Costa, R. P. O., De Oliveira Santos, S. Y. K., Rodrigues, R. P., et al. (2018). Sistematx, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules, 23(1), 103.  https://doi.org/10.3390/molecules23010103.CrossRefPubMedCentralGoogle Scholar
  173. Seaman, F. C. (1982). Sesquiterpene lactones as taxanomic characters in the Astraceae. The Botanical Review, 48(2), 121–594.CrossRefGoogle Scholar
  174. Sen, R., Bandyopadhyay, S., Dutta, A., Mandal, G., Ganguly, S., Saha, P., et al. (2007). Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. Journal of Medical Microbiology, 56(9), 1213–1218.  https://doi.org/10.1099/jmm.0.47364-0.CrossRefPubMedGoogle Scholar
  175. Sen, R., Ganguly, S., Saha, P., & Chatterjee, M. (2010). Efficacy of artemisinin in experimental visceral Leishmaniasis. International Journal of Antimicrobial Agents, 36(1), 43–49.  https://doi.org/10.1016/j.ijantimicag.2010.03.008.CrossRefPubMedGoogle Scholar
  176. Severiano, A., Carriço, J. A., Robinson, D. A., Ramirez, M., & Pinto, F. R. (2011). Evaluation of Jackknife and Bootstrap for defining confidence intervals for pairwise agreement measures. PLoS ONE, 6(5), 6–8.  https://doi.org/10.1371/journal.pone.0019539.CrossRefGoogle Scholar
  177. Shang, N., Saleem, A., Musallam, L., Walshe-Roussel, B., Badawi, A., Cuerrier, A., et al. (2015). Novel approach to identify potential bioactive plant metabolites: Pharmacological and metabolomics analyses of ethanol and hot water extracts of several Canadian medicinal plants of the cree of eeyou istchee. PLoS ONE, 10(8), 1–15.  https://doi.org/10.1371/journal.pone.0135721.CrossRefGoogle Scholar
  178. Silva, D. B., Turatti, I. C. C., Gouveia, D. R., Ernst, M., Teixeira, S. P., & Lopes, N. P. (2014). Mass Spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Scientific Reports, 4, 4309.  https://doi.org/10.1038/srep04309.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Skinner-Adams, T. S., Sumanadasa, S. D. M., Fisher, G. M., Davis, R. A., Doolan, D. L., & Andrews, K. T. (2016). Defining the targets of antiparasitic compounds. Drug Discovery Today, 21(5), 725–739.  https://doi.org/10.1016/j.drudis.2016.01.002.CrossRefPubMedGoogle Scholar
  180. Smith, P., Ho, C. K., Takagi, Y., Djaballah, H., & Shuman, S. (2016). Nanomolar inhibitors of Trypanosoma brucei RNA triphosphatase. mBio, 7(1), 1–10.  https://doi.org/10.1128/mBio.00058-16.CrossRefGoogle Scholar
  181. Sosa, A. M., Amaya, S., Salamanca Capusiri, E., Gilabert, M., Bardón, A., Giménez, A., et al. (2016). Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Natural Product Research, 30(22), 2611–2615.  https://doi.org/10.1080/14786419.2015.1126260.CrossRefPubMedGoogle Scholar
  182. Soudi, S., Mahmoud, S., Zavaran, A., & Ghaemi, A. (2007). Antileishmanial effect of Echinacea purpurea root extract cultivated in Iran. Iranian Journal of Pharmaceutical Research (IJPR), 6, 147–149.Google Scholar
  183. Sousa, A. D., Maia, A. I. V., Rodrigues, T. H. S., Canuto, K. M., Ribeiro, P. R. V., de Cassia Alves Pereira, R., et al. (2016). Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF. Industrial Crops and Products, 79, 91–103.  https://doi.org/10.1016/j.indcrop.2015.10.045.CrossRefGoogle Scholar
  184. Spring, O., Zipper, R., Conrad, J., Vogler, B., Klaiber, I., & Da Costac, F. B. (2003). Sesquiterpene lactones from glandular trichomes of Viguiera radula (Heliantheae; Asteraceae). Phytochemistry, 62(8), 1185–1189.  https://doi.org/10.1016/S0031-9422(02)00747-1.CrossRefPubMedGoogle Scholar
  185. Sülsen, V. P., Cazorla, S. I., Frank, F. M., Redko, F. C., Anesini, C. A., Coussio, J. D., et al. (2007). Trypanocidal and leishmanicidal activities of flavonoids from Argentine medicinal plants. American Journal of Tropical Medicine and Hygiene, 77(4), 654–659.CrossRefGoogle Scholar
  186. Sülsen, V. P., Frank, F. M., Cazorla, S. I., Anesini, C. A., Malchiodi, E. L., Freixa, B., et al. (2008). Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrobial Agents and Chemotherapy, 52(7), 2415–2419.  https://doi.org/10.1128/AAC.01630-07.CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sulyok, M., Rückle, T., Roth, A., Mürbeth, R. E., Chalon, S., Kerr, N., et al. (2017). DSM265 for Plasmodium falciparum chemoprophylaxis: A randomised, double blinded, phase 1 trial with controlled human malaria infection. The Lancet Infectious Diseases, 17(6), 636–644.  https://doi.org/10.1016/S1473-3099(17)30139-1.CrossRefPubMedPubMedCentralGoogle Scholar
  188. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Inititative (MSI). Metabolomics, 3(3), 211–221.  https://doi.org/10.1007/s11306-007-0082-2.Proposed.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Sumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212–229.  https://doi.org/10.1039/c4np00072b.CrossRefPubMedGoogle Scholar
  190. Sun, Y. N., No, J. H., Lee, G. Y., Li, W., Yang, S. Y., Yang, G., et al. (2016). Phenolic constituents of medicinal plants with activity against Trypanosoma brucei. Molecules, 21(4), 1–11.  https://doi.org/10.3390/molecules21040480.CrossRefGoogle Scholar
  191. Swevers, L., Kravariti, L., Ciolfi, S., Xenou-Kokoletsi, M., Ragoussis, N., Smagghe, G., et al. (2004). A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18(1), 134–136.  https://doi.org/10.1096/fj.03-0627fje.CrossRefGoogle Scholar
  192. Sykes, D. B. (2018). The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert Opinion on Therapeutic Targets, 22(11), 893–898.  https://doi.org/10.1080/14728222.2018.1536748.CrossRefPubMedGoogle Scholar
  193. Tariku, Y., Hymete, A., Hailu, A., & Rohloff, J. (2011). In vitro evaluation of antileishmanial activity and toxicity of essential oils of Artemisia absinthium and Echinops kebericho. Chemistry & Biodiversity, 8(4), 614–623.  https://doi.org/10.1002/cbdv.201000331.CrossRefGoogle Scholar
  194. Tasdemir, D., Kaiser, M., Brun, R., Yardley, V., Schmidt, T. J., Tosun, F., et al. (2006). Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrobial Agents and Chemotherapy, 50(4), 1352–1364.  https://doi.org/10.1128/AAC.50.4.1352.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Tiuman, T. S., Ueda-nakamura, T., Tiuman, T. S., Prado, B., & Filho, D. (2005). Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrobial Agents and Chemotherapy., 49(1), 176–182.  https://doi.org/10.1128/AAC.49.11.176.CrossRefPubMedPubMedCentralGoogle Scholar
  196. Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research, 6, 750.  https://doi.org/10.12688/f1000research.11120.1.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.  https://doi.org/10.1002/cem.695.CrossRefGoogle Scholar
  198. Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17(10), 1217–1220.  https://doi.org/10.1038/nm.2471.CrossRefPubMedGoogle Scholar
  199. Ulloa, J. L., Spina, R., Casasco, A., Petray, P. B., Martino, V., Sosa, M. A., et al. (2017). Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi. Parasites and Vectors, 10(1), 1–11.  https://doi.org/10.1186/s13071-017-2509-6.CrossRefGoogle Scholar
  200. Van Buren, J. P., & Robinson, W. B. (1969). Formation of complexes between protein and tannic acid. Journal of Agricultural and Food Chemistry, 17(4), 772–777.  https://doi.org/10.1021/jf60164a003.CrossRefGoogle Scholar
  201. van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.  https://doi.org/10.1186/1471-2164-7-142.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Vasilev, N., Boccard, J., Lang, G., Grömping, U., Fischer, R., Goepfert, S., et al. (2016). Structured plant metabolomics for the simultaneous exploration of multiple factors. Scientific Reports, 6, 1–15.  https://doi.org/10.1038/srep37390.CrossRefGoogle Scholar
  203. Villas-Bôas, S. G., Mas, S., Åkesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24(5), 613–646.  https://doi.org/10.1002/mas.20032.CrossRefPubMedGoogle Scholar
  204. Vyas, V. K., & Ghate, M. (2011). Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini-Reviews in Medicinal Chemistry, 11(12), 1039–1055.  https://doi.org/10.2174/138955711797247707.CrossRefPubMedGoogle Scholar
  205. Wall, M. E., Wani, M. C., Brown, D. M., Fullas, F., Olwald, J. B., Josephson, F. F., et al. (1996). Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine, 3(3), 281–285.  https://doi.org/10.1016/S0944-7113(96)80067-5.CrossRefPubMedGoogle Scholar
  206. Wang, Q.-Y., Bushell, S., Qing, M., Xu, H. Y., Bonavia, A., Nunes, S., et al. (2011). Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. Journal of Virology, 85(13), 6548–6556.  https://doi.org/10.1128/JVI.02510-10.CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wei, M. C., & Yang, Y. C. (2014). Extraction characteristics and kinetic studies of oleanolic and ursolic acids from Hedyotis diffusa under ultrasound-assisted extraction conditions. Separation and Purification Technology, 130, 182–192.  https://doi.org/10.1016/j.seppur.2014.04.029.CrossRefGoogle Scholar
  208. Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.  https://doi.org/10.1021/ac0713510.CrossRefPubMedGoogle Scholar
  209. Worku, N., Mossie, A., Stich, A., Daugschies, A., Trettner, S., Hemdan, N. Y. A., et al. (2013). Evaluation of the in vitro efficacy of Artemisia annua, Rumex abyssinicus, and Catha edulis Forsk Extracts in Cancer and Trypanosoma brucei cells. ISRN Biochemistry, 2013, 1–10.  https://doi.org/10.1155/2013/910308.CrossRefGoogle Scholar
  210. World Health Organization WHO. (2015). Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases. Geneva: World Health Organization.Google Scholar
  211. Yang, Y. C., Wei, M. C., Huang, T. C., Lee, S. Z., & Lin, S. S. (2013). Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Industrial Crops and Products, 45, 182–190.  https://doi.org/10.1016/j.indcrop.2012.11.041.CrossRefGoogle Scholar
  212. Yuliana, N. D., Jahangir, M., Verpoorte, R., & Choi, Y. H. (2013). Metabolomics for the rapid dereplication of bioactive compounds from natural sources. Phytochemistry Reviews, 12(2), 293–304.  https://doi.org/10.1007/s11101-013-9297-1.CrossRefGoogle Scholar
  213. Zani, C. L., Alves, T. M. A., de Oliveira, A. B., Murta, S. M. F., Ceravolo, I. P., & Romanha, A. J. (1994). Trypanocidal components of Pluchea quitoc L. Phytotherapy Research, 8(6), 375–377.  https://doi.org/10.1002/ptr.2650080614.CrossRefGoogle Scholar
  214. Zdero, C., & Bohlmann, F. (1990). Systematics and evolution within the Compositae, seen with the eyes of a chemist. Plant Systematics and Evolution, 171(1–4), 1–14.  https://doi.org/10.1007/BF00940593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Laboratory of Protein Crystallography, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations